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Introduction

zfp is an open source library for compressed numerical arrays that
support high throughput read and write random access.  zfp also supports
streaming compression of integer and floating-point data, e.g., for
applications that read and write large data sets to and from disk.
zfp is primarily written in C and C++ but also includes Python and
Fortran bindings.

zfp was developed at
Lawrence Livermore National Laboratory [https://www.llnl.gov] and is
loosely based on the algorithm described in the following
paper:



Peter Lindstrom

“Fixed-Rate Compressed Floating-Point Arrays [https://www.researchgate.net/publication/264417607_Fixed-Rate_Compressed_Floating-Point_Arrays]”

IEEE Transactions on Visualization and Computer Graphics

20(12):2674-2683, December 2014

doi:10.1109/TVCG.2014.2346458 [http://doi.org/10.1109/TVCG.2014.2346458]






zfp was originally designed for floating-point arrays only, but has been
extended to also support integer data, and could for instance be used to
compress images and quantized volumetric data.  To achieve high compression
ratios, zfp generally uses lossy but optionally error-bounded compression.
Bit-for-bit lossless compression is also possible through one of zfp’s
compression modes.

zfp works best for 2D and 3D arrays that exhibit spatial correlation, such as
continuous fields from physics simulations, images, regularly sampled terrain
surfaces, etc.  Although zfp also provides a 1D array class that can be used
for 1D signals such as audio, or even unstructured floating-point streams,
the compression scheme has not been well optimized for this use case, and
rate and quality may not be competitive with floating-point compressors
designed specifically for 1D streams.  As of version 0.5.4, zfp also
supports compression of 4D arrays.

zfp is freely available as open source under a BSD license.
For more information on zfp and comparisons with other compressors, please
see the zfp
website [https://computation.llnl.gov/projects/floating-point-compression].
For bug reports, please consult the
GitHub issue tracker [https://github.com/LLNL/zfp/issues].
For questions, comments, and requests, please contact
Peter Lindstrom.




          

      

      

    

  

    
      
          
            
  
Overview

zfp is a compressor for integer and floating-point data stored in
multidimensional arrays.  The compressor is primarily lossy, meaning
that the numerical values are usually only approximately represented,
though the user may specify error tolerances to limit the amount of loss.
Fully lossless compression, where values are
represented exactly, is also possible.

The zfp software primarily consists of three components: a C library
for compressing whole arrays (or smaller pieces of arrays); C++ classes
that implement random-accessible compressed arrays; and a command-line
compression tool and other code examples.  Additional language bindings
are also available for the first two components.

zfp has also been incorporated into several independently developed
plugins for interfacing zfp with popular I/O libraries and visualization
tools such as
ADIOS [https://www.olcf.ornl.gov/center-projects/adios/],
HDF5 [https://www.hdfgroup.org/solutions/hdf5/],
Intel IPP [https://software.intel.com/en-us/intel-ipp],
TTK [https://topology-tool-kit.github.io], and
VTK-m [http://m.vtk.org].

The typical user will interact with zfp via one or more of those
components, specifically


	Via the C API when doing I/O in an application or
otherwise performing data (de)compression online.  High-speed,
parallel compression is supported via OpenMP and CUDA.


	Via zfp’s in-memory compressed-array classes when
performing computations on very large arrays that demand random access to
array elements, e.g., in visualization, data analysis, or even in numerical
simulation.  These classes can often substitute C/C++ arrays and STL
vectors in applications with minimal code changes.


	Via the zfp command-line tool when compressing
binary files offline.


	Via one of the I/O libraries or visualization tools that support zfp,
e.g.,


	ADIOS plugin [https://github.com/suchyta1/AtoZ]


	HDF5 plugin [https://github.com/LLNL/H5Z-ZFP]


	Intel IPP plugin [https://software.intel.com/en-us/ipp-dev-reference-zfp-compression-functions]


	TTK plugin [https://topology-tool-kit.github.io/installation.html]


	VTK plugin [https://gitlab.kitware.com/vtk/vtk/tree/master/ThirdParty/zfp]


	VTK-m plugin [http://m.vtk.org/documentation/namespacevtkm_1_1worklet_1_1zfp.html]








In all cases, it is important to know how to use zfp’s
compression modes as well as what the
limitations of zfp are.  Although it is not critical
to understand the
compression algorithm itself, having some familiarity with
its major components may help understand what to expect and how zfp’s
parameters influence the result.

zfp compresses d-dimensional (1D, 2D, 3D, and 4D) arrays of integer or
floating-point values by partitioning the array into cubical blocks of 4d
values, i.e., 4, 16, 64, or 256 values for 1D, 2D, 3D, and 4D arrays,
respectively.  Each such block is (de)compressed independently into a fixed-
or variable-length bit string, and these bit strings are concatenated into a
single stream of bits.

zfp usually truncates each bit string to a fixed number of bits to meet
a storage budget or to some variable length needed to meet a given error
tolerance, as dictated by the compressibility of the data.
The bit string representing any given block may be truncated at any point and
still yield a valid approximation.  The early bits are most important; later
bits progressively refine the approximation, similar to how the last few bits
in a floating-point number have less significance than the first several bits
and can often be discarded (zeroed) with limited impact on accuracy.

The next several sections cover information on the zfp algorithm and its
parameters; the C API; the compressed array classes; the Python and Fortran
APIs; examples of how to perform compression and work with the classes; how
to use the binary file compressor; and code examples that further illustrate
how to use zfp.  The documentation concludes with frequently asked questions
and troubleshooting, as well as current limitations and future development
directions.

For questions not answered here, please contact
Peter Lindstrom.




          

      

      

    

  

    
      
          
            
  
License


Copyright (c) 2014-2019, Lawrence Livermore National Security, LLC.

Produced at the Lawrence Livermore National Laboratory.

Written by Peter Lindstrom, Markus Salasoo, Matt Larsen, and Stephen Herbein.

LLNL-CODE-663824.

All rights reserved.



This file is part of the zfp library.
For details, see http://computation.llnl.gov/casc/zfp/.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the disclaimer below.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the disclaimer (as noted below) in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the LLNS/LLNL nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED.  IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL SECURITY,
LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Additional BSD Notice

1. This notice is required to be provided under our contract with the U.S.
Department of Energy (DOE).  This work was produced at Lawrence Livermore
National Laboratory under Contract No. DE-AC52-07NA27344 with the DOE.

2. Neither the United States Government nor Lawrence Livermore National
Security, LLC nor any of their employees, makes any warranty, express or
implied, or assumes any liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe
privately-owned rights.

3. Also, reference herein to any specific commercial products, process, or
services by trade name, trademark, manufacturer or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or Lawrence Livermore National
Security, LLC.  The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or
Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.




          

      

      

    

  

    
      
          
            
  
Installation

zfp consists of four distinct parts: a compression library written in C,
a set of C++ header files that implement compressed arrays and corresponding
C wrappers, optional Python and Fortran bindings, and a set of C and C++
examples and utilities.  The main compression codec is written in C and
should conform to both the ISO C89 and C99 standards.  The C++ array classes
are implemented entirely in header files and can be included as is, but since
they call the compression library, applications must link with libzfp.

zfp is preferably built using CMake [https://cmake.org], although the
core library can also be built using GNU make on Linux, macOS, and MinGW.
zfp has successfully been built and tested using these compilers:


	gcc versions 4.4.7, 4.7.3, 4.8.5, 4.9.4, 5.5.0, 6.1.0, 6.4.0, 7.1.0, 7.3.0, 8.1.0


	icc versions 14.0.3, 15.0.6, 16.0.4, 17.0.2, 18.0.2, 19.0.3


	clang versions 3.9.1, 4.0.0, 5.0.0, 6.0.0


	MinGW version 5.3.0


	Visual Studio versions 14 (2015), 15 (2017)




zfp conforms to various language standards, including C89, C99, C++98,
C++11, and C++14.


Note

zfp requires 64-bit compiler and operating system support.
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Algorithm

zfp uses two different algorithms to support lossy
and lossless compression.  These algorithms are
described in detail below.


Lossy Compression

The zfp lossy compression scheme is based on the idea of breaking a
d-dimensional array into independent blocks of 4d values each,
e.g., 4 × 4 × 4 values in three dimensions.  Each block is
compressed/decompressed entirely independently from all other blocks.  In
this sense, zfp is similar to current hardware texture compression schemes
for image coding implemented on graphics cards and mobile devices.

The lossy compression scheme implemented in this version of zfp has evolved
from the method described in the original paper, and can
conceptually be thought of as consisting of eight sequential steps (in
practice some steps are consolidated or exist only for illustrative
purposes):



	The d-dimensional array is partitioned into blocks of dimensions
4d.  If the array dimensions are not multiples of four, then
blocks near the boundary are padded to the next multiple of four.  This
padding is invisible to the application.


	The independent floating-point values in a block are converted to what
is known as a block-floating-point representation, which uses a single,
common floating-point exponent for all 4d values.  The effect of
this conversion is to turn each floating-point value into a 31- or 63-bit
signed integer.  If the values in the block are all zero or are smaller
in magnitude than the fixed-accuracy tolerance (see below), then only a
single bit is stored with the block to indicate that it is “empty” and
expands to all zeros.  Note that the block-floating-point conversion and
empty-block encoding are not performed if the input data is represented
as integers rather than floating-point numbers.


	The integers are decorrelated using a custom, high-speed, near orthogonal
transform similar to the discrete cosine transform used in JPEG image
coding.  The transform exploits separability and is implemented
efficiently in-place using the lifting scheme, requiring only
2.5 d integer additions and 1.5 d bit shifts by one per integer in
d dimensions.  If the data is “smooth,” then this transform will turn
most integers into small signed values clustered around zero.


	The signed integer coefficients are reordered in a manner similar to
JPEG zig-zag ordering so that statistically they appear in a roughly
monotonically decreasing order.  Coefficients corresponding to low
frequencies tend to have larger magnitude and are listed first.  In 3D,
coefficients corresponding to frequencies i, j, k in the three
dimensions are ordered by i + j + k first and then by
i2 + j2 + k2.


	The two’s complement signed integers are converted to their negabinary
(base negative two) representation using one addition and one bit-wise
exclusive or per integer.  Because negabinary has no single dedicated
sign bit, these integers are subsequently treated as unsigned.  Unlike
sign-magnitude representations, the leftmost one-bit in negabinary
simultaneously encodes the sign and approximate magnitude of a number.
Moreover, unlike two’s complement, numbers small in magnitude have many
leading zeros in negabinary regardless of sign, which facilitates
encoding.


	The bits that represent the list of 4d integers are transposed so
that instead of being ordered by coefficient they are ordered by bit
plane, from most to least significant bit.  Viewing each bit plane as
an unsigned integer, with the lowest bit corresponding to the lowest
frequency coefficient, the anticipation is that the first several of
these transposed integers are small, because the coefficients are
assumed to be ordered by magnitude.


	The transform coefficients are compressed losslessly using embedded
coding by exploiting the property that the coefficients tend to have many
leading zeros that need not be encoded explicitly.  Each bit plane is
encoded in two parts, from lowest to highest bit.  First, the n lowest
bits are emitted verbatim, where n is the smallest number such that
the 4d − n highest bits in all previous bit planes are all
zero.  Initially, n = 0.  Then, a variable-length representation of the
remaining 4d − n bits, x, is encoded.  For such an integer
x, a single bit is emitted to indicate if x = 0, in which case we are
done with the current bit plane.  If not, then bits of x are emitted,
starting from the lowest bit, until a one-bit is emitted.  This triggers
another test whether this is the highest set bit of x, and the result
of this test is output as a single bit.  If not, then the procedure
repeats until all m of x’s value bits have been output, where
2m-1 ≤ x < 2m.  This can be thought of as a
run-length encoding of the zeros of x, where the run lengths are
expressed in unary.  The total number of value bits, n, in this bit
plane is then incremented by m before being passed to the next bit
plane, which is encoded by first emitting its n lowest bits.  The
assumption is that these bits correspond to n coefficients whose most
significant bits have already been output, i.e., these n bits are
essentially random and not compressible.  Following this, the remaining
4d − n bits of the bit plane are run-length encoded as
described above, which potentially results in n being increased.


	The embedded coder emits one bit at a time, with each successive bit
potentially improving the accuracy of the approximation.  The early
bits are most important and have the greatest impact on accuracy,
with the last few bits providing very small changes.  The resulting
compressed bit stream can be truncated at any point and still allow for
a valid approximate reconstruction of the original block of values.
The final step truncates the bit stream in one of three ways: to a fixed
number of bits (the fixed-rate mode); after some fixed number of bit
planes have been encoded (the fixed-precision mode); or until a lowest
bit plane number has been encoded, as expressed in relation to the common
floating-point exponent within the block (the fixed-accuracy mode).







Various parameters are exposed for controlling the quality and compressed
size of a block, and can be specified by the user at a very fine
granularity.  These parameters are discussed here.



Lossless Compression

The reversible (lossless) compression algorithm shares most steps with
the lossy algorithm.  The main differences are steps 2, 3, and 8, which are
the only sources of error.  Since step 2 may introduce loss in the conversion
to zfp’s block-floating-point representation, the reversible algorithm adds
a test to see if this conversion is lossless.  It does so by converting the
values back to the source format and testing the result for bitwise equality
with the uncompressed data.  If this test passes, then a modified
decorrelating transform is performed in step 3 that uses reversible integer
subtraction operations only.  Finally, step 8 is modified so that no one-bits
are truncated in the variable-length bit stream.  However, all least
significant bit planes with all-zero bits are truncated, and the number of
encoded bit planes is recorded in step 7.  As with lossy compression, a
floating-point block consisting of all (“positive”) zeros is represented as
a single bit, making it possible to efficiently encode sparse data.

If the block-floating-point transform is not lossless, then the reversible
compression algorithm falls back on a simpler scheme that reinterprets
floating-point values as integers via type punning.  This lossless
conversion from floating-point to integer data replaces step 2, and the
algorithm proceeds from there with the modified step 3.  Moreover, this
conversion ensures that special values like infinities, NaNs, and negative
zero are preserved.

The lossless algorithm handles integer data also, for which step 2 is omitted.
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Compression Modes

zfp accepts one or more parameters for specifying how the data is to be
compressed to meet various constraints on accuracy or size.  At a high
level, there are five different compression modes that are mutually
exclusive:
expert,
fixed-rate,
fixed-precision,
fixed-accuracy, and
reversible mode.
The user has to select one of these modes and its corresponding parameters.
In streaming I/O applications, the
fixed-accuracy mode is preferred, as
it provides the highest quality (in the absolute error sense) per bit of
compressed storage.

The zfp_stream struct encapsulates the compression parameters and
other information about the compressed stream.  Its members should not be
manipulated directly.  Instead, use the access functions (see the
C API section) for setting and querying them.  One can
verify the active compression mode on a zfp_stream through
zfp_stream_compression_mode().  The members that govern the
compression parameters are described below.


Expert Mode

The most general mode is the ‘expert mode,’ which takes four integer
parameters.  Although most users will not directly select this mode,
we discuss it first since the other modes can be expressed in terms of
setting expert mode parameters.

The four parameters denote constraints that are applied to each block
in the compression algorithm.
Compression is terminated as soon as one of these constraints is not met,
which has the effect of truncating the compressed bit stream that encodes
the block.  The four constraints are as follows:


	
uint zfp_stream.minbits

	The minimum number of compressed bits used to represent a block.  Usually
this parameter equals one bit, unless each and every block is to be stored
using a fixed number of bits to facilitate random access, in which case it
should be set to the same value as zfp_stream.maxbits.






	
uint zfp_stream.maxbits

	The maximum number of bits used to represent a block.  This parameter
sets a hard upper bound on compressed block size, and governs the rate
in fixed-rate mode.  It may also be used as an
upper storage limit to guard against buffer overruns in combination with
the accuracy constraints given by zfp_stream.maxprec and
zfp_stream.minexp.






	
uint zfp_stream.maxprec

	The maximum number of bit planes encoded.  This parameter governs the number
of most significant uncompressed bits encoded per transform coefficient.
It does not directly correspond to the number of uncompressed mantissa bits
for the floating-point or integer values being compressed, but is closely
related.  This is the parameter that specifies the
precision in fixed-precision mode, and it
provides a mechanism for controlling the relative error.  Note that this
parameter selects how many bits planes to encode regardless of the magnitude
of the common floating-point exponent within the block.






	
int zfp_stream.minexp

	The smallest absolute bit plane number encoded (applies to floating-point
data only; this parameter is ignored for integer data).  The place value of
each transform coefficient bit depends on the common floating-point exponent,
e, that scales the integer coefficients.  If the most significant
coefficient bit has place value 2e, then the number of bit planes
encoded is (one plus) the difference between e and
zfp_stream.minexp.  As an analogy, consider representing
currency in decimal.  Setting zfp_stream.minexp to -2 would,
if generalized to base 10, ensure that amounts are represented to cent
accuracy, i.e., in units of 10-2 = $0.01.  This parameter governs
the absolute error in fixed-accuracy mode.
Note that to achieve a certain accuracy in the decompressed values, the
zfp_stream.minexp value has to be conservatively lowered since
zfp’s inverse transform may magnify the error (see also
FAQs #20-22).





Care must be taken to allow all constraints to be met, as encoding
terminates as soon as a single constraint is violated (except
zfp_stream.minbits, which is satisfied at the end of encoding by
padding zeros).

As mentioned above, other combinations of constraints can be used.
For example, to ensure that the compressed stream is not larger than
the uncompressed one, or that it fits within the amount of memory
allocated, one may in conjunction with other constraints set

maxbits = 4^d * CHAR_BIT * sizeof(Type)





where Type is either float or double.  The minbits parameter is useful
only in fixed-rate mode; when minbits = maxbits, zero-bits are
padded to blocks that compress to fewer than maxbits bits.

The effects of the above four parameters are best explained in terms of the
three main compression modes supported by zfp, described below.



Fixed-Rate Mode

In fixed-rate mode, each d-dimensional compressed block of 4d values
is stored using a fixed number of bits given by the parameter
zfp_stream.maxbits.  This number of compressed bits per
block is amortized over the 4d values to give a rate in
bits per value:

rate = maxbits / 4^d





This rate is specified in the zfp executable via the
-r option, and programmatically via zfp_stream_set_rate(),
as a floating-point value.  Fixed-rate mode can also be achieved via the
expert mode interface by setting

minbits = maxbits = (1 << (2 * d)) * rate
maxprec = ZFP_MAX_PREC
minexp = ZFP_MIN_EXP





Note that each block stores a bit to indicate whether the block is empty,
plus a common exponent.  Hence zfp_stream.maxbits must be at
least 9 for single precision and 12 for double precision.

Fixed-rate mode is needed to support random access to blocks, and also is
the mode used in the implementation of zfp’s
compressed arrays.  Fixed-rate mode also ensures a
predictable memory/storage footprint, but usually results in far worse
accuracy per bit than the variable-rate fixed-precision and fixed-accuracy
modes.


Note

Use fixed-rate mode only if you have to bound the compressed size
or need random access to blocks.
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Parallel Execution

As of zfp 0.5.3, parallel compression (but not decompression) is
supported on multicore processors via OpenMP [http://www.openmp.org]
threads.
zfp 0.5.4 adds CUDA [https://developer.nvidia.com/about-cuda]
support for fixed-rate compression and decompression on the GPU.

Since zfp partitions arrays into small independent blocks, a
large amount of data parallelism is inherent in the compression scheme that
can be exploited.  In principle, concurrency is limited only by the number
of blocks that make up an array, though in practice each thread is
responsible for compressing a chunk of several contiguous blocks.


Note

zfp parallel compression is confined to shared memory on a single
compute node or GPU.  No effort is made to coordinate compression across
distributed memory on networked compute nodes, although zfp’s fine-grained
partitioning of arrays should facilitate distributed parallel compression.
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High-Level C API

The C API is broken down into a high-level API,
which handles compression of entire arrays, and a
low-level-api for processing individual blocks
and managing the underlying bit stream.

The high-level API should be the API of choice for applications that
compress and decompress entire arrays.  A low-level API
exists for processing individual, possibly partial blocks as well as
reduced-precision integer data less than 32 bits wide.

The following sections are available:


	Macros


	Types


	Constants


	Functions


	Compressed Stream


	Compression Parameters


	Execution Policy


	Compression and Decompression









Macros


	
ZFP_VERSION_MAJOR

	




	
ZFP_VERSION_MINOR

	




	
ZFP_VERSION_PATCH

	




	
ZFP_VERSION

	




	
ZFP_VERSION_STRING

	Macros identifying the zfp library version.  ZFP_VERSION is
a single integer constructed from the previous three macros.
ZFP_VERSION_STRING is a string literal.  See also
zfp_library_version and zfp_version_string.






	
ZFP_CODEC

	Macro identifying the version of the compression CODEC.  See also
zfp_codec_version.






	
ZFP_MIN_BITS

	




	
ZFP_MAX_BITS

	




	
ZFP_MAX_PREC

	




	
ZFP_MIN_EXP

	Default compression parameter settings that impose no constraints.
The largest possible compressed block size, corresponding to 3D blocks
of doubles, is given by ZFP_MAX_BITS.  See also
zfp_stream.






	
ZFP_META_NULL

	Null representation of the 52-bit encoding of field metadata.  This value
is returned by zfp_field_metadata() when the field metadata cannot
be encoded in 64 bits, such as when the array dimensions are too large
(see Limitations).  In addition to signaling error, this value
is guaranteed not to represent valid metadata.






	
ZFP_HEADER_MAGIC

	




	
ZFP_HEADER_META

	




	
ZFP_HEADER_MODE

	




	
ZFP_HEADER_FULL

	Bit masks for specifying which portions of a header to output (if any).
These constants should be bitwise ORed together.  Use
ZFP_HEADER_FULL to output all header information available.
The compressor and decompressor must agree on which parts of the header
to read/write.

ZFP_HEADER_META in essence encodes the information stored in
the zfp_field struct, while ZFP_HEADER_MODE encodes
the compression parameters stored in the zfp_stream struct.
The magic, which includes the CODEC version, can be used to uniquely
identify the stream as a zfp stream.

See zfp_read_header() and zfp_write_header() for
how to read and write header information.






	
ZFP_MAGIC_BITS

	




	
ZFP_META_BITS

	




	
ZFP_MODE_SHORT_BITS

	




	
ZFP_MODE_LONG_BITS

	




	
ZFP_HEADER_MAX_BITS

	




	
ZFP_MODE_SHORT_MAX

	Number of bits used by each portion of the header.  These macros are
primarily informational and should not be accessed by the user through
the high-level API.  For most common compression parameter settings,
only ZFP_MODE_SHORT_BITS bits of header information are stored
to encode the mode (see zfp_stream_mode()).







Types


	
zfp_stream

	The zfp_stream struct encapsulates all information about the
compressed stream for a single block or a collection of blocks that
represent an array.  See the section on compression modes
for a description of the members of this struct.

typedef struct {
  uint minbits;       // minimum number of bits to store per block
  uint maxbits;       // maximum number of bits to store per block
  uint maxprec;       // maximum number of bit planes to store
  int minexp;         // minimum floating point bit plane number to store
  bitstream* stream;  // compressed bit stream
  zfp_execution exec; // execution policy and parameters
} zfp_stream;










	
zfp_execution

	The zfp_stream also stores information about how to execute
compression, e.g., sequentially or in parallel.  The execution is determined
by the policy and any policy-specific parameters such as number of
threads.

typedef struct {
  zfp_exec_policy policy; // execution policy (serial, omp, ...)
  zfp_exec_params params; // execution parameters
} zfp_execution;










	
zfp_exec_policy

	Currently three execution policies are available: serial, OpenMP parallel,
and CUDA parallel.

typedef enum {
  zfp_exec_serial = 0, // serial execution (default)
  zfp_exec_omp    = 1, // OpenMP multi-threaded execution
  zfp_exec_cuda   = 2  // CUDA parallel execution
} zfp_exec_policy;










	
zfp_exec_params

	Execution parameters are shared among policies in a union.  Currently
the only parameters available are for OpenMP.

typedef union {
  zfp_exec_params_omp omp; // OpenMP parameters
} zfp_exec_params;










	
zfp_exec_params_omp

	Execution parameters for OpenMP parallel compression.  These are
initialized to default values.  When nonzero, they indicate the number
of threads to request for parallel compression and the number of 1D
blocks to assign to each thread when compressing 1D arrays.

typedef struct {
  uint threads;    // number of requested threads
  uint chunk_size; // number of blocks per chunk (1D only)
} zfp_exec_params_omp;










	
zfp_mode

	Enumerates the compression modes.

typedef enum {
  zfp_mode_null            = 0, // an invalid configuration of the 4 params
  zfp_mode_expert          = 1, // expert mode (4 params set manually)
  zfp_mode_fixed_rate      = 2, // fixed rate mode
  zfp_mode_fixed_precision = 3, // fixed precision mode
  zfp_mode_fixed_accuracy  = 4, // fixed accuracy mode
  zfp_mode_reversible      = 5  // reversible (lossless) mode
} zfp_mode;










	
zfp_type

	Enumerates the scalar types supported by the compressor, and is used to
describe the uncompressed array.  The compressor and decompressor must use
the same zfp_type, e.g., one cannot compress doubles and decompress
to floats or integers.

typedef enum {
  zfp_type_none   = 0, // unspecified type
  zfp_type_int32  = 1, // 32-bit signed integer
  zfp_type_int64  = 2, // 64-bit signed integer
  zfp_type_float  = 3, // single precision floating point
  zfp_type_double = 4  // double precision floating point
} zfp_type;










	
zfp_field

	The uncompressed array is described by the zfp_field struct, which
encodes the array’s scalar type, dimensions, and memory layout.

typedef struct {
  zfp_type type;       // scalar type (e.g., int32, double)
  uint nx, ny, nz, nw; // sizes (zero for unused dimensions)
  int sx, sy, sz, sw;  // strides (zero for contiguous array a[nw][nz][ny][nx])
  void* data;          // pointer to array data
} zfp_field;





For example, a static multidimensional C array declared as

double array[n1][n2][n3][n4];





would be described by a zfp_field with members

type = zfp_type_double;
nx = n4; ny = n3; nz = n2; nw = n1;
sx = 1; sy = n4; sz = n3 * n4; sw = n2 * n3 * n4;
data = &array[0][0][0][0];





The strides, when nonzero, specify how the array is laid out in memory.
Strides can be used in case multiple fields are stored interleaved via
“array of struct” (AoS) rather than “struct of array” (SoA) storage,
or if the dimensions should be transposed during (de)compression.
Given 4D array indices (x, y, z, w), the corresponding array
element is stored at

data[x * sx + y * sy + z * sz + w * sw]





where data is a pointer to the first array element.






Warning

It is paramount that the field dimensions, nx, ny, nz, and nw,
and strides, sx, sy, sz, and sw, be correctly mapped to how the
uncompressed array is laid out in memory.  Although compression will
still succeed if array dimensions are accidentally transposed, compression
ratio and/or accuracy may suffer greatly.  Since the leftmost index, x,
is assumed to vary fastest, zfp can be thought of as assuming
Fortran ordering.  For C ordered arrays, the user should transpose
the dimensions or specify strides to properly describe the memory layout.
See this discussion for further details.
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Low-Level C API

The low-level C API provides functionality for compressing individual
d-dimensional blocks of up to 4d values.  If a block is not
complete, i.e., contains fewer than 4d values, then zfp’s partial
block support should be favored over padding the block with, say, zeros
or other fill values.  The blocks (de)compressed need not be contiguous
and can be gathered from or scattered to a larger array by setting
appropriate strides.

The following topics are available:


	Stream Manipulation


	Encoder


	1D Data


	2D Data


	3D Data


	4D Data






	Decoder


	1D Data


	2D Data


	3D Data


	4D Data






	Utility Functions





Stream Manipulation


	
size_t zfp_stream_flush(zfp_stream* stream)

	Flush bit stream to write out any buffered bits.  This function must be
must be called after the last encode call.  The bit stream is aligned on
a stream word boundary following this call.  The number of zero-bits
written, if any, is returned.






	
size_t zfp_stream_align(zfp_stream* stream)

	Align bit stream on next word boundary.  This function is analogous to
zfp_stream_flush(), but for decoding.  That is, wherever the
encoder flushes the stream, the decoder should align it to ensure
synchronization between encoder and decoder.  The number of bits skipped,
if any, is returned.







Encoder

A function is available for encoding whole or partial blocks of each scalar
type and dimensionality.  These functions return the number of bits of
compressed storage for the block being encoded, or zero upon failure.


1D Data


	
uint zfp_encode_block_int32_1(zfp_stream* stream, const int32* block)

	




	
uint zfp_encode_block_int64_1(zfp_stream* stream, const int64* block)

	




	
uint zfp_encode_block_float_1(zfp_stream* stream, const float* block)

	




	
uint zfp_encode_block_double_1(zfp_stream* stream, const double* block)

	Encode 1D contiguous block of 4 values.






	
uint zfp_encode_block_strided_int32_1(zfp_stream* stream, const int32* p, int sx)

	




	
uint zfp_encode_block_strided_int64_1(zfp_stream* stream, const int64* p, int sx)

	




	
uint zfp_encode_block_strided_float_1(zfp_stream* stream, const float* p, int sx)

	




	
uint zfp_encode_block_strided_double_1(zfp_stream* stream, const double* p, int sx)

	Encode 1D complete block from strided array with stride sx.






	
uint zfp_encode_partial_block_strided_int32_1(zfp_stream* stream, const int32* p, uint nx, int sx)

	




	
uint zfp_encode_partial_block_strided_int64_1(zfp_stream* stream, const int64* p, uint nx, int sx)

	




	
uint zfp_encode_partial_block_strided_float_1(zfp_stream* stream, const float* p, uint nx, int sx)

	




	
uint zfp_encode_partial_block_strided_double_1(zfp_stream* stream, const double* p, uint nx, int sx)

	Encode 1D partial block of size nx from strided array with stride sx.







2D Data


	
uint zfp_encode_block_int32_2(zfp_stream* stream, const int32* block)

	




	
uint zfp_encode_block_int64_2(zfp_stream* stream, const int64* block)

	




	
uint zfp_encode_block_float_2(zfp_stream* stream, const float* block)

	




	
uint zfp_encode_block_double_2(zfp_stream* stream, const double* block)

	Encode 2D contiguous block of 4 × 4 values.






	
uint zfp_encode_block_strided_int32_2(zfp_stream* stream, const int32* p, int sx, int sy)

	




	
uint zfp_encode_block_strided_int64_2(zfp_stream* stream, const int64* p, int sx, int sy)

	




	
uint zfp_encode_block_strided_float_2(zfp_stream* stream, const float* p, int sx, int sy)

	




	
uint zfp_encode_block_strided_double_2(zfp_stream* stream, const double* p, int sx, int sy)

	Encode 2D complete block from strided array with strides sx and sy.






	
uint zfp_encode_partial_block_strided_int32_2(zfp_stream* stream, const int32* p, uint nx, uint ny, int sx, int sy)

	




	
uint zfp_encode_partial_block_strided_int64_2(zfp_stream* stream, const int64* p, uint nx, uint ny, int sx, int sy)

	




	
uint zfp_encode_partial_block_strided_float_2(zfp_stream* stream, const float* p, uint nx, uint ny, int sx, int sy)

	




	
uint zfp_encode_partial_block_strided_double_2(zfp_stream* stream, const double* p, uint nx, uint ny, int sx, int sy)

	Encode 2D partial block of size nx × ny from strided array with
strides sx and sy.







3D Data


	
uint zfp_encode_block_int32_3(zfp_stream* stream, const int32* block)

	




	
uint zfp_encode_block_int64_3(zfp_stream* stream, const int64* block)

	




	
uint zfp_encode_block_float_3(zfp_stream* stream, const float* block)

	




	
uint zfp_encode_block_double_3(zfp_stream* stream, const double* block)

	Encode 3D contiguous block of 4 × 4 × 4 values.






	
uint zfp_encode_block_strided_int32_3(zfp_stream* stream, const int32* p, int sx, int sy, int sz)

	




	
uint zfp_encode_block_strided_int64_3(zfp_stream* stream, const int64* p, int sx, int sy, int sz)

	




	
uint zfp_encode_block_strided_float_3(zfp_stream* stream, const float* p, int sx, int sy, int sz)

	




	
uint zfp_encode_block_strided_double_3(zfp_stream* stream, const double* p, int sx, int sy, int sz)

	Encode 3D complete block from strided array with strides sx, sy, and
sz.






	
uint zfp_encode_partial_block_strided_int32_3(zfp_stream* stream, const int32* p, uint nx, uint ny, uint nz, int sx, int sy, int sz)

	




	
uint zfp_encode_partial_block_strided_int64_3(zfp_stream* stream, const int64* p, uint nx, uint ny, uint nz, int sx, int sy, int sz)

	




	
uint zfp_encode_partial_block_strided_float_3(zfp_stream* stream, const float* p, uint nx, uint ny, uint nz, int sx, int sy, int sz)

	




	
uint zfp_encode_partial_block_strided_double_3(zfp_stream* stream, const double* p, uint nx, uint ny, uint nz, int sx, int sy, int sz)

	Encode 3D partial block of size nx × ny × nz from strided
array with strides sx, sy, and sz.







4D Data


	
uint zfp_encode_block_int32_4(zfp_stream* stream, const int32* block)

	




	
uint zfp_encode_block_int64_4(zfp_stream* stream, const int64* block)

	




	
uint zfp_encode_block_float_4(zfp_stream* stream, const float* block)

	




	
uint zfp_encode_block_double_4(zfp_stream* stream, const double* block)

	Encode 4D contiguous block of 4 × 4 × 4 × 4 values.






	
uint zfp_encode_block_strided_int32_4(zfp_stream* stream, const int32* p, int sx, int sy, int sz, int sw)

	




	
uint zfp_encode_block_strided_int64_4(zfp_stream* stream, const int64* p, int sx, int sy, int sz, int sw)

	




	
uint zfp_encode_block_strided_float_4(zfp_stream* stream, const float* p, int sx, int sy, int sz, int sw)

	




	
uint zfp_encode_block_strided_double_4(zfp_stream* stream, const double* p, int sx, int sy, int sz, int sw)

	Encode 4D complete block from strided array with strides sx, sy, sz, and
sw.






	
uint zfp_encode_partial_block_strided_int32_4(zfp_stream* stream, const int32* p, uint nx, uint ny, uint nz, uint nw, int sx, int sy, int sz, int sw)

	




	
uint zfp_encode_partial_block_strided_int64_4(zfp_stream* stream, const int64* p, uint nx, uint ny, uint nz, uint nw, int sx, int sy, int sz, int sw)

	




	
uint zfp_encode_partial_block_strided_float_4(zfp_stream* stream, const float* p, uint nx, uint ny, uint nz, uint nw, int sx, int sy, int sz, int sw)

	




	
uint zfp_encode_partial_block_strided_double_4(zfp_stream* stream, const double* p, uint nx, uint ny, uint nz, uint nw, int sx, int sy, int sz, int sw)

	Encode 4D partial block of size nx × ny × nz × nw
from strided array with strides sx, sy, sz, and sw.








Decoder

Each function below decompresses a single block and returns the number of bits
of compressed storage consumed.  See corresponding encoder functions above for
further details.


1D Data


	
uint zfp_decode_block_int32_1(zfp_stream* stream, int32* block)

	




	
uint zfp_decode_block_int64_1(zfp_stream* stream, int64* block)

	




	
uint zfp_decode_block_float_1(zfp_stream* stream, float* block)

	




	
uint zfp_decode_block_double_1(zfp_stream* stream, double* block)

	Decode 1D contiguous block of 4 values.






	
uint zfp_decode_block_strided_int32_1(zfp_stream* stream, int32* p, int sx)

	




	
uint zfp_decode_block_strided_int64_1(zfp_stream* stream, int64* p, int sx)

	




	
uint zfp_decode_block_strided_float_1(zfp_stream* stream, float* p, int sx)

	




	
uint zfp_decode_block_strided_double_1(zfp_stream* stream, double* p, int sx)

	Decode 1D complete block to strided array with stride sx.






	
uint zfp_decode_partial_block_strided_int32_1(zfp_stream* stream, int32* p, uint nx, int sx)

	




	
uint zfp_decode_partial_block_strided_int64_1(zfp_stream* stream, int64* p, uint nx, int sx)

	




	
uint zfp_decode_partial_block_strided_float_1(zfp_stream* stream, float* p, uint nx, int sx)

	




	
uint zfp_decode_partial_block_strided_double_1(zfp_stream* stream, double* p, uint nx, int sx)

	Decode 1D partial block of size nx to strided array with stride sx.







2D Data


	
uint zfp_decode_block_int32_2(zfp_stream* stream, int32* block)

	




	
uint zfp_decode_block_int64_2(zfp_stream* stream, int64* block)

	




	
uint zfp_decode_block_float_2(zfp_stream* stream, float* block)

	




	
uint zfp_decode_block_double_2(zfp_stream* stream, double* block)

	Decode 2D contiguous block of 4 × 4 values.






	
uint zfp_decode_block_strided_int32_2(zfp_stream* stream, int32* p, int sx, int sy)

	




	
uint zfp_decode_block_strided_int64_2(zfp_stream* stream, int64* p, int sx, int sy)

	




	
uint zfp_decode_block_strided_float_2(zfp_stream* stream, float* p, int sx, int sy)

	




	
uint zfp_decode_block_strided_double_2(zfp_stream* stream, double* p, int sx, int sy)

	Decode 2D complete block to strided array with strides sx and sy.






	
uint zfp_decode_partial_block_strided_int32_2(zfp_stream* stream, int32* p, uint nx, uint ny, int sx, int sy)

	




	
uint zfp_decode_partial_block_strided_int64_2(zfp_stream* stream, int64* p, uint nx, uint ny, int sx, int sy)

	




	
uint zfp_decode_partial_block_strided_float_2(zfp_stream* stream, float* p, uint nx, uint ny, int sx, int sy)

	




	
uint zfp_decode_partial_block_strided_double_2(zfp_stream* stream, double* p, uint nx, uint ny, int sx, int sy)

	Decode 2D partial block of size nx × ny to strided array with
strides sx and sy.







3D Data


	
uint zfp_decode_block_int32_3(zfp_stream* stream, int32* block)

	




	
uint zfp_decode_block_int64_3(zfp_stream* stream, int64* block)

	




	
uint zfp_decode_block_float_3(zfp_stream* stream, float* block)

	




	
uint zfp_decode_block_double_3(zfp_stream* stream, double* block)

	Decode 3D contiguous block of 4 × 4 × 4 values.






	
uint zfp_decode_block_strided_int32_3(zfp_stream* stream, int32* p, int sx, int sy, int sz)

	




	
uint zfp_decode_block_strided_int64_3(zfp_stream* stream, int64* p, int sx, int sy, int sz)

	




	
uint zfp_decode_block_strided_float_3(zfp_stream* stream, float* p, int sx, int sy, int sz)

	




	
uint zfp_decode_block_strided_double_3(zfp_stream* stream, double* p, int sx, int sy, int sz)

	Decode 3D complete block to strided array with strides sx, sy, and sz.






	
uint zfp_decode_partial_block_strided_int32_3(zfp_stream* stream, int32* p, uint nx, uint ny, uint nz, int sx, int sy, int sz)

	




	
uint zfp_decode_partial_block_strided_int64_3(zfp_stream* stream, int64* p, uint nx, uint ny, uint nz, int sx, int sy, int sz)

	




	
uint zfp_decode_partial_block_strided_float_3(zfp_stream* stream, float* p, uint nx, uint ny, uint nz, int sx, int sy, int sz)

	




	
uint zfp_decode_partial_block_strided_double_3(zfp_stream* stream, double* p, uint nx, uint ny, uint nz, int sx, int sy, int sz)

	Decode 3D partial block of size nx × ny × nz to strided
array with strides sx, sy, and sz.







4D Data


	
uint zfp_decode_block_int32_4(zfp_stream* stream, int32* block)

	




	
uint zfp_decode_block_int64_4(zfp_stream* stream, int64* block)

	




	
uint zfp_decode_block_float_4(zfp_stream* stream, float* block)

	




	
uint zfp_decode_block_double_4(zfp_stream* stream, double* block)

	Decode 4D contiguous block of 4 × 4 × 4 × 4 values.






	
uint zfp_decode_block_strided_int32_4(zfp_stream* stream, int32* p, int sx, int sy, int sz, int sw)

	




	
uint zfp_decode_block_strided_int64_4(zfp_stream* stream, int64* p, int sx, int sy, int sz, int sw)

	




	
uint zfp_decode_block_strided_float_4(zfp_stream* stream, float* p, int sx, int sy, int sz, int sw)

	




	
uint zfp_decode_block_strided_double_4(zfp_stream* stream, double* p, int sx, int sy, int sz, int sw)

	Decode 4D complete block to strided array with strides sx, sy, sz, and sw.






	
uint zfp_decode_partial_block_strided_int32_4(zfp_stream* stream, int32* p, uint nx, uint ny, uint nz, uint nw, int sx, int sy, int sz, int sw)

	




	
uint zfp_decode_partial_block_strided_int64_4(zfp_stream* stream, int64* p, uint nx, uint ny, uint nz, uint nw, int sx, int sy, int sz, int sw)

	




	
uint zfp_decode_partial_block_strided_float_4(zfp_stream* stream, float* p, uint nx, uint ny, uint nz, uint nw, int sx, int sy, int sz, int sw)

	




	
uint zfp_decode_partial_block_strided_double_4(zfp_stream* stream, double* p, uint nx, uint ny, uint nz, uint nw, int sx, int sy, int sz, int sw)

	Decode 4D partial block of size nx × ny × nz × nw
to strided array with strides sx, sy, sz, and sw.








Utility Functions

These functions convert 8- and 16-bit signed and unsigned integer data to
(by promoting) and from (by demoting) 32-bit integers that can be
(de)compressed by zfp’s int32 functions.  These conversion functions
are preferred over simple casting since they eliminate the redundant leading
zeros that would otherwise have to be compressed, and they apply the
appropriate bias for unsigned integer data.


	
void zfp_promote_int8_to_int32(int32* oblock, const int8* iblock, uint dims)

	




	
void zfp_promote_uint8_to_int32(int32* oblock, const uint8* iblock, uint dims)

	




	
void zfp_promote_int16_to_int32(int32* oblock, const int16* iblock, uint dims)

	




	
void zfp_promote_uint16_to_int32(int32* oblock, const uint16* iblock, uint dims)

	Convert dims-dimensional contiguous block to 32-bit integer type.






	
void zfp_demote_int32_to_int8(int8* oblock, const int32* iblock, uint dims)

	




	
void zfp_demote_int32_to_uint8(uint8* oblock, const int32* iblock, uint dims)

	




	
void zfp_demote_int32_to_int16(int16* oblock, const int32* iblock, uint dims)

	




	
void zfp_demote_int32_to_uint16(uint16* oblock, const int32* iblock, uint dims)

	Convert dims-dimensional contiguous block from 32-bit integer type.
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Bit Stream API

zfp relies on low-level functions for bit stream I/O, e.g., for
reading/writing single bits or groups of bits.  zfp’s bit streams
support random access (with some caveats) and, optionally, strided
access.  The functions read from and write to main memory allocated
by the user.  Buffer overruns are for performance reasons not guarded
against.

From an implementation standpoint, bit streams are read from and written
to memory in increments of words of bits.  The constant power-of-two
word size is configured at compile time, and is limited
to 8, 16, 32, or 64 bits.

The bit stream API is publicly exposed and may be used to write additional
information such as metadata into the zfp compressed stream and to
manipulate whole or partial bit streams.  Moreover, we envision releasing
the bit stream functions as a separate library in the future that may be
used, for example, in other compressors.

Stream readers and writers are synchronized by making corresponding calls.
For each write call, there is a corresponding read call.  This ensures
that reader and writer agree on the position within the stream and the
number of bits buffered, if any.  The API below reflects this duality.

A bit stream is either in read or write mode, or either, if rewound to
the beginning.  When in read mode, only read calls should be made,
and similarly for write mode.


Strided Streams

Bit streams may be strided by sequentially reading/writing a few words at
a time and then skipping over some user-specified number of words.  This
allows, for instance, zfp to interleave the first few bits of all
compressed blocks in order to support progressive access.  To enable
strided access, which does carry a small performance penalty, the
macro BIT_STREAM_STRIDED must be defined during compilation.

Strides are specified in terms of a block size—a power-of-two number
of contiguous words—and a delta, which specifies how many words to
advance the stream by to get to the next contiguous block.  These bit
stream blocks are entirely independent of the 4d blocks used for
compression in zfp.  Setting delta to zero ensures a non-strided,
sequential layout.



Macros

Two compile-time macros are used to influence the behavior:
BIT_STREAM_WORD_TYPE and BIT_STREAM_STRIDED.
These are documented in the installation
section.



Types


	
word

	Bits are buffered and read/written in units of words.  By default, the
bit stream word type is 64 bits, but may be set to 8, 16, or 32 bits
by setting the macro BIT_STREAM_WORD_TYPE to uint8,
uint16, or uint32, respectively.  Larger words
tend to give higher throughput, while 8-bit words are needed to ensure
endian independence (see FAQ #11).






	
bitstream

	The bit stream struct maintains all the state associated with a bit
stream.  This struct is passed to all bit stream functions.  Its members
should not be accessed directly.

struct bitstream {
  uint bits;       // number of buffered bits (0 <= bits < word size)
  word buffer;     // buffer for incoming/outgoing bits (buffer < 2^bits)
  word* ptr;       // pointer to next word to be read/written
  word* begin;     // beginning of stream
  word* end;       // end of stream (currently unused)
  size_t mask;     // one less the block size in number of words (if BIT_STREAM_STRIDED)
  ptrdiff_t delta; // number of words between consecutive blocks (if BIT_STREAM_STRIDED)
};











Constants


	
const size_t stream_word_bits

	The number of bits in a word.  The size of a flushed bit stream will be
a multiple of this number of bits.  See BIT_STREAM_WORD_TYPE.







Functions


	
bitstream* stream_open(void* buffer, size_t bytes)

	Allocate a bitstream struct and associate it with the memory
buffer allocated by the caller.






	
void stream_close(bitstream* stream)

	Close the bit stream and deallocate stream.






	
bitstream* stream_clone(const bitstream* stream)

	Create a copy of stream that points to the same memory buffer.






	
void* stream_data(const bitstream* stream)

	Return pointer to the beginning of bit stream stream.






	
size_t stream_size(const bitstream* stream)

	Return position of stream pointer in number of bytes, which equals the
end of stream if no seeks have been made.  Note that additional bits
may be buffered and not reported unless the stream has been flushed.






	
size_t stream_capacity(const bitstream* stream)

	Return byte size of memory buffer associated with stream.






	
uint stream_read_bit(bitstream* stream)

	Read a single bit from stream.






	
uint stream_write_bit(bitstream* stream, uint bit)

	Write single bit to stream.  bit must be one of 0 or 1.






	
uint64 stream_read_bits(bitstream* stream, uint n)

	Read and return 0 ≤ n ≤ 64 bits from stream.






	
uint64 stream_write_bits(bitstream* stream, uint64 value, uint n)

	Write 0 ≤ n ≤ 64 low bits of value to stream.  Return any
remaining bits from value, i.e., value >> n.






	
size_t stream_rtell(const bitstream* stream)

	Return bit offset to next bit to be read.






	
size_t stream_wtell(const bitstream* stream)

	Return bit offset to next bit to be written.






	
void stream_rewind(bitstream* stream)

	Rewind stream to beginning of memory buffer.  Following this call, the
stream may either be read or written.






	
void stream_rseek(bitstream* stream, size_t offset)

	Position stream for reading at given bit offset.  This places the
stream in read mode.






	
void stream_wseek(bitstream* stream, size_t offset)

	Position stream for writing at given bit offset.  This places the
stream in write mode.






	
void stream_skip(bitstream* stream, uint n)

	Skip over the next n bits, i.e., without reading them.






	
void stream_pad(bitstream* stream, uint n)

	Append n zero-bits to stream.






	
size_t stream_align(bitstream* stream)

	Align stream on next word boundary by skipping bits.  No skipping is
done if the stream is already word aligned.  Return the number of
skipped bits, if any.






	
size_t stream_flush(bitstream* stream)

	Write out any remaining buffered bits.  When one or more bits are
buffered, append zero-bits to the stream to align it on a word boundary.
Return the number of bits of padding, if any.






	
void stream_copy(bitstream* dst, bitstream* src, size_t n)

	Copy n bits from src to dst, advancing both bit streams.






	
size_t stream_stride_block(const bitstream* stream)

	Return stream block size in number of words.  The block size is always
one word unless strided streams are enabled.  See Strided Streams
for more information.






	
ptrdiff_t stream_stride_delta(const bitstream* stream)

	Return stream delta in number of words between blocks.  See
Strided Streams for more information.






	
int stream_set_stride(bitstream* stream, size_t block, ptrdiff_t delta)

	Set block size, block, in number of words and spacing, delta, in number
of blocks for strided access.  Requires BIT_STREAM_STRIDED.
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Compressed Arrays

zfp’s compressed arrays are C++ classes, plus C wrappers around these
classes, that implement random-accessible single- and multi-dimensional
floating-point arrays whose storage size, specified in number of bits per
array element, is set by the user.  Such arbitrary storage is achieved via
zfp’s lossy fixed-rate compression mode, by
partitioning each d-dimensional array into blocks of 4d values
and compressing each block to a fixed number of bits.  The more smoothly
the array values vary along each dimension, the more accurately zfp can
represent them.  In other words, these arrays are not suitable for
representing data where adjacent elements are not correlated.  Rather,
the expectation is that the array represents a regularly sampled and
predominantly continuous function, such as a temperature field in a physics
simulation.

The rate, measured in number of bits per array element, can be specified
in fractions of a bit (but see FAQs #12 and
#18 for limitations).  Note that array dimensions need not
be multiples of four; zfp transparently handles partial blocks on array
boundaries.

The C++ templated array classes are implemented entirely as header files
that call the zfp C library to perform compression and decompression.
These arrays cache decompressed blocks to reduce the number of compression
and decompression calls.  Whenever an array value is read, the corresponding
block is first looked up in the cache, and if found the uncompressed value
is returned.  Otherwise the block is first decompressed and stored in the
cache.  Whenever an array element is written (whether actually modified or
not), a “dirty bit” is set with its cached block to indicate that the block
must be compressed back to persistent storage when evicted from the cache.

This section documents the public interface to the array classes, including
base classes and member accessor classes like proxy references/pointers,
iterators, and views.

The following sections are available:


	Array Classes


	Caching


	Serialization


	References


	Pointers


	Iterators


	Views


	C bindings





Array Classes

Currently there are six array classes for 1D, 2D, and 3D arrays, each of
which can represent single- or double-precision values.  Although these
arrays store values in a form different from conventional single- and
double-precision floating point, the user interacts with the arrays via
floats and doubles.

The array classes can often serve as direct substitutes for C/C++
single- and multi-dimensional floating-point arrays and STL vectors, but
have the benefit of allowing fine control over storage size.  All classes
below belong to the zfp namespace.


Base Class


	
class array


	Virtual base class for common array functionality.






	
double array::rate() const


	Return rate in bits per value.






	
double array::set_rate(double rate)


	Set desired compression rate in bits per value.  Return the closest rate
supported.  See FAQ #12 and FAQ #18
for discussions of the rate granularity.  This method destroys the previous
contents of the array.






	
virtual void array::clear_cache() const


	Empty cache without compressing modified cached blocks, i.e., discard any
cached updates to the array.






	
virtual void array::flush_cache() const


	Flush cache by compressing all modified cached blocks back to persistent
storage and emptying the cache.  This method should be called before
writing the compressed representation of the array to disk, for instance.






	
size_t array::compressed_size() const


	Return number of bytes of storage for the compressed data.  This amount
does not include the small overhead of other class members or the size
of the cache.  Rather, it reflects the size of the memory buffer
returned by compressed_data().






	
uchar *array::compressed_data() const


	Return pointer to compressed data for read or write access.  The size
of the buffer is given by compressed_size().






	
uint array::dimensionality() const


	Return the dimensionality (1, 2, or 3) of the array.






	
zfp_type array::scalar_type() const


	Return the underlying scalar type (zfp_type) of the array.






	
array::header array::get_header() const


	Return a short fixed-length header describing the scalar
type, dimensions, and rate associated with the array.
An array::header::exception is thrown if the header cannot
describe the array.






	
static array *array::construct(const array::header &h, const uchar *buffer = 0, size_t buffer_size_bytes = 0)


	Construct a compressed-array object whose scalar type, dimensions, and rate
are given by the header h.  Return a pointer to the base class upon
success.  The optional buffer points to compressed data that, when passed,
is copied into the array.  If buffer is absent, the array is default
initialized with all zeroes.  The optional buffer_size_bytes argument
specifies the buffer length in bytes.  When passed, a comparison is made to
ensure that the buffer size is at least as large as the size implied by
the header.  If this function fails for any reason, an
array::header::exception is thrown.







Common Methods

The following methods are common to 1D, 2D, and 3D arrays, but are implemented
in the array class specific to each dimensionality rather than in the base
class.


	
size_t array::size() const


	Total number of elements in array, e.g., nx × ny × nz for
3D arrays.






	
size_t array::cache_size() const


	Return the cache size in number of bytes.






	
void array::set_cache_size(size_t csize)


	Set minimum cache size in bytes.  The actual size is always a power of two
bytes and consists of at least one block.  If csize is zero, then a
default cache size is used, which requires the array dimensions to be known.






	
void array::get(Scalar *p) const


	Decompress entire array and store at p, for which sufficient storage must
have been allocated.  The uncompressed array is assumed to be contiguous
(with default strides) and stored in the usual “row-major” order, i.e., with
x varying faster than y and y varying faster than z.






	
void array::set(const Scalar *p)


	Initialize array by copying and compressing data stored at p.  The
uncompressed data is assumed to be stored as in the get()
method.






	
Scalar array::operator[](uint index) const


	Return scalar stored at given flat index (inspector).  For a 3D array,
index = x + nx * (y + ny * z).






	
reference array::operator[](uint index)


	Return proxy reference to scalar stored at given flat
index (mutator).  For a 3D array, index = x + nx * (y + ny * z).






	
iterator array::begin()


	Return iterator to beginning of array.






	
iterator array::end()


	Return iterator to end of array.  As with STL iterators, the end points
to a virtual element just past the last valid array element.







1D, 2D, and 3D Arrays

Below are classes and methods specific to each array dimensionality and
template scalar type (float or double).  Since the classes
and methods share obvious similarities regardless of dimensionality, only
one generic description for all dimensionalities is provided.

Note: In the class declarations below, the class template for the scalar
type is omitted for readability, e.g.,
class array1 is used as shorthand for
template <typename Scalar> class array1.  Wherever the type
Scalar appears, it refers to this template argument.


	
class array1 : public array


	




	
class array2 : public array


	




	
class array3 : public array


	This is a 1D/2D/3D array that inherits basic functionality from the generic
array base class.  The template argument, Scalar,
specifies the floating type returned for array elements.  The suffixes
f and d can also be appended to each class to indicate float
or double type, e.g., array1f is a synonym for
array1<float>.






	
class arrayANY : public array


	Fictitious class used to refer to any one of array1,
array2, and array3.  This class is not part of
the zfp API.






	
array1::array1()


	




	
array2::array2()


	




	
array3::array3()


	Default constructor.  Creates an empty array whose size and rate are both
zero.






Note

The default constructor is useful when the array size or rate is not known at
time of construction.  Before the array can become usable, however, it must
be resized and its rate must be set via
array::set_rate().  These two tasks can be performed in either order.
Furthermore, the desired cache size should be set using
array::set_cache_size(), as the default constructor creates a
cache that holds only one zfp block, i.e., the minimum possible.
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Python Bindings

zfp 0.5.5 adds zfPy: Python bindings that allow compressing
and decompressing NumPy [https://www.numpy.org] integer and
floating-point arrays.  The zfPy implementation is based on
Cython [https://cython.org] and requires both NumPy and Cython
to be installed.  Currently, zfPy supports only serial execution.

The zfPy API is limited to two functions, for compression and
decompression, which are described below.


Compression


	
zfpy.compress_numpy(arr, tolerance = -1, rate = -1, precision = -1, write_header = True)

	Compress NumPy array, arr, and return a compressed byte stream.  The
non-expert compression mode is selected by setting one of
tolerance, rate, or precision.  If none of these arguments is
specified, then reversible mode is used.  By
default, a header that encodes array shape and scalar type as well as
compression parameters is prepended, which can be omitted by setting
write_header to False.  If this function fails for any reason, an
exception is thrown.





zfPy compression currently requires a NumPy array
(ndarray [https://www.numpy.org/devdocs/reference/arrays.ndarray.html])
populated with the data to be compressed.  The array metadata (i.e.,
shape, strides, and scalar type) are used to automatically populate the
zfp_field structure passed to zfp_compress().  By default,
all that is required to be passed to the compression function is the
NumPy array; this will result in a stream that includes a header and is
losslessly compressed using the reversible mode.
For example:

import zfpy
import numpy as np

my_array = np.arange(1, 20)
compressed_data = zfpy.compress_numpy(my_array)
decompressed_array = zfpy.decompress_numpy(compressed_data)

# confirm lossless compression/decompression
np.testing.assert_array_equal(my_array, decompressed_array)





Using the fixed-accuracy, fixed-rate, or fixed-precision modes simply requires
setting one of the tolerance, rate, or precision arguments, respectively.
For example:

compressed_data = zfpy.compress_numpy(my_array, tolerance=1e-3)
decompressed_array = zfpy.decompress_numpy(compressed_data)

# Note the change from "equal" to "allclose" due to the lossy compression
np.testing.assert_allclose(my_array, decompressed_array, atol=1e-3)





Since NumPy arrays are C-ordered by default (i.e., the rightmost index
varies fastest) and zfp_compress() assumes Fortran ordering
(i.e., the leftmost index varies fastest), compress_numpy()
automatically reverses the order of dimensions and strides in order to
improve the expected memory access pattern during compression.
The decompress_numpy() function also reverses the order of
dimensions and strides, and therefore decompression will restore the
shape of the original array.  Note, however, that the zfp stream does
not encode the memory layout of the original NumPy array, and therefore
layout information like strides, contiguity, and C vs. Fortran order
may not be preserved.  Nevertheless, zfPy correctly compresses NumPy
arrays with any memory layout, including Fortran ordering and non-contiguous
storage.

Byte streams produced by compress_numpy() can be decompressed
by the zfp command-line tool.  In general, they cannot
be deserialized as compressed arrays, however.


Note

decompress_numpy() requires a header to decompress properly, so do
not set write_header = False during compression if you intend to
decompress the stream with zfPy.
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Fortran Bindings

zfp 0.5.5 adds zFORp: a Fortran API providing wrappers around
the high-level C API. Wrappers for
compressed arrays will arrive in a future release.
The zFORp implementation is based on the standard iso_c_binding
module available since Fortran 2003.

Every high-level C API function can be called from a Fortran wrapper function.
C structs are wrapped as Fortran derived types, each containing a single C
pointer to the C struct in memory. The wrapper functions accept and return
these Fortran types, so users should never need to touch the C pointers.
In addition to the high-level C API, two essential functions from the
bit stream API for opening and closing bit streams are
available.

See example code tests/fortran/testFortran.f (on the GitHub
develop branch [https://github.com/LLNL/zfp/tree/develop])
for how the Fortran API is used to compress and decompress data.


Types


	
type  zFORp_bitstream

	
	Type fields:

	
	% object [c_ptr] :: A C pointer to the instance of bitstream













	
type  zFORp_stream

	
	Type fields:

	
	% object [c_ptr] :: A C pointer to the instance of zfp_stream













	
type  zFORp_field

	
	Type fields:

	
	% object [c_ptr] :: A C pointer to the instance of zfp_field














Constants


Enumerations


	
integer zFORp_type_none

	




	
integer zFORp_type_int32

	




	
integer zFORp_type_int64

	




	
integer zFORp_type_float

	




	
integer zFORp_type_double

	Enums wrapping zfp_type






	
integer zFORp_mode_null

	




	
integer zFORp_mode_expert

	




	
integer zFORp_mode_fixed_rate

	




	
integer zFORp_mode_fixed_precision

	




	
integer zFORp_mode_fixed_accuracy

	




	
integer zFORp_mode_reversible

	Enums wrapping zfp_mode






	
integer zFORp_exec_serial

	




	
integer zFORp_exec_omp

	




	
integer zFORp_exec_cuda

	Enums wrapping zfp_exec_policy







Non-Enum Constants


	
integer zFORp_version_major

	Wraps ZFP_VERSION_MAJOR






	
integer zFORp_version_minor

	Wraps ZFP_VERSION_MINOR






	
integer zFORp_version_patch

	Wraps ZFP_VERSION_PATCH






	
integer zFORp_codec_version

	Wraps zfp_codec_version






	
integer zFORp_library_version

	Wraps zfp_library_version






	
character(len=36) zFORp_version_string

	Wraps zfp_version_string






	
integer zFORp_min_bits

	Wraps ZFP_MIN_BITS






	
integer zFORp_max_bits

	Wraps ZFP_MAX_BITS






	
integer zFORp_max_prec

	Wraps ZFP_MAX_PREC






	
integer zFORp_min_exp

	Wraps ZFP_MIN_EXP






	
integer zFORp_header_magic

	Wraps ZFP_HEADER_MAGIC






	
integer zFORp_header_meta

	Wraps ZFP_HEADER_META






	
integer zFORp_header_mode

	Wraps ZFP_HEADER_MODE






	
integer zFORp_header_full

	Wraps ZFP_HEADER_FULL






	
integer zFORp_meta_null

	Wraps ZFP_META_NULL






	
integer zFORp_magic_bits

	Wraps ZFP_MAGIC_BITS






	
integer zFORp_meta_bits

	Wraps ZFP_META_BITS






	
integer zFORp_mode_short_bits

	Wraps ZFP_MODE_SHORT_BITS






	
integer zFORp_mode_long_bits

	Wraps ZFP_MODE_LONG_BITS






	
integer zFORp_header_max_bits

	Wraps ZFP_HEADER_MAX_BITS






	
integer zFORp_mode_short_max

	Wraps ZFP_MODE_SHORT_MAX








Functions and Subroutines

Each of the functions included here wraps a corresponding C function.  Please
consult the C documentation for detailed descriptions of the functions, their
parameters, and their return values.


Bit Stream


	
function  zFORp_bitstream_stream_open(buffer, bytes)

	Wrapper for stream_open()


	Parameters:

	
	buffer [c_ptr,in] :: Memory buffer


	bytes [integer (kind=8),in] :: Buffer size in bytes






	Return:

	bs [zFORp_bitstream] :: Bit stream










	
subroutine  zFORp_bitstream_stream_close(bs)

	Wrapper for stream_close()


	Parameters:

	bs [zFORp_bitstream,inout] :: Bit stream











Utility Functions


	
function  zFORp_type_size(scalar_type)

	Wrapper for zfp_type_size()


	Parameters:

	scalar_type [integer,in] :: zFORp_type enum



	Return:

	type_size [integer (kind=8)] :: Size of described zfp_type, in bytes, from C-language perspective











Compressed Stream


	
function  zFORp_stream_open(bs)

	Wrapper for zfp_stream_open()


	Parameters:

	bs [zFORp_bitstream,in] :: Bit stream



	Return:

	stream [zFORp_stream] :: Newly allocated compressed stream










	
subroutine  zFORp_stream_close(stream)

	Wrapper for zfp_stream_close()


	Parameters:

	stream [zFORp_stream,inout] :: Compressed stream










	
function  zFORp_stream_bit_stream(stream)

	Wrapper for zfp_stream_bit_stream()


	Parameters:

	stream [zFORp_stream,in] :: Compressed stream



	Return:

	bs [zFORp_bitstream] :: Bit stream










	
function  zFORp_stream_compression_mode(stream)

	Wrapper for zfp_stream_compression_mode()


	Parameters:

	stream [zFORp_stream,in] :: Compressed stream



	Return:

	mode [integer] :: zFORp_mode enum










	
function  zFORp_stream_mode(stream)

	Wrapper for zfp_stream_mode()


	Parameters:

	stream [zFORp_stream,in] :: Compressed stream



	Return:

	mode [integer (kind=8)] :: 64-bit encoded mode










	
subroutine  zFORp_stream_params(stream, minbits, maxbits, maxprec, minexp)

	Wrapper for zfp_stream_params()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	minbits [integer,inout] :: Minimum number of bits per block


	maxbits [integer,inout] :: Maximum number of bits per block


	maxprec [integer,inout] :: Maximum precision


	minexp [integer,inout] :: Minimum bit plane number encoded













	
function  zFORp_stream_compressed_size(stream)

	Wrapper for zfp_stream_compressed_size()


	Parameters:

	stream [zFORp_stream,in] :: Compressed stream



	Return:

	compressed_size [integer (kind=8)] :: Compressed size in bytes










	
function  zFORp_stream_maximum_size(stream, field)

	Wrapper for zfp_stream_maximum_size()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	field [zFORp_field,in] :: Field metadata






	Return:

	max_size [integer (kind=8)] :: Maximum possible compressed size in bytes










	
subroutine  zFORp_stream_set_bit_stream(stream, bs)

	Wrapper for zfp_stream_set_bit_stream()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	bs [zFORp_bitstream,in] :: Bit stream













	
subroutine  zFORp_stream_rewind(stream)

	Wrapper for zfp_stream_rewind()


	Parameters:

	stream [zFORp_stream,in] :: Compressed stream











Compression Parameters


	
subroutine  zFORp_stream_set_reversible(stream)

	Wrapper for zfp_stream_set_reversible()


	Parameters:

	stream [zFORp_stream,in] :: Compressed stream










	
function  zFORp_stream_set_rate(stream, rate, scalar_type, dims, wra)

	Wrapper for zfp_stream_set_rate()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	rate [real,in] :: Desired rate


	scalar_type [integer,in] :: zFORp_type enum


	dims [integer,in] :: Number of dimensions


	wra [integer,in] :: Use write random access?






	Return:

	rate_result [real] :: Actual set rate in bits/scalar










	
function  zFORp_stream_set_precision(stream, prec)

	Wrapper for zfp_stream_set_precision()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	prec [integer,in] :: Desired precision






	Return:

	prec_result [integer] :: Actual set precision










	
function  zFORp_stream_set_accuracy(stream, tolerance)

	Wrapper for zfp_stream_set_accuracy()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	tolerance [real (kind=8),in] :: Desired error tolerance






	Return:

	tol_result [real (kind=8)] :: Actual set tolerance










	
function  zFORp_stream_set_mode(stream, mode)

	Wrapper for zfp_stream_set_mode()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	mode [integer (kind=8),in] :: Compact encoding of compression parameters






	Return:

	mode_result [integer] :: Newly set zFORp_mode enum










	
function  zFORp_stream_set_params(stream, minbits, maxbits, maxprec, minexp)

	Wrapper for zfp_stream_set_params()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	minbits [integer,in] :: Minimum number of bits per block


	maxbits [integer,in] :: Maximum number of bits per block


	maxprec [integer,in] :: Maximum precision


	minexp [integer,in] :: Minimum bit plane number encoded






	Return:

	is_success [integer] :: Indicate whether parameters were successfully set (1) or not (0)











Execution Policy


	
function  zFORp_stream_execution(stream)

	Wrapper for zfp_stream_execution()


	Parameters:

	stream [zFORp_stream,in] :: Compressed stream



	Return:

	execution_policy [integer] :: zFORp_exec enum indicating active execution policy










	
function  zFORp_stream_omp_threads(stream)

	Wrapper for zfp_stream_omp_threads()


	Parameters:

	stream [zFORp_stream,in] :: Compressed stream



	Return:

	thread_count [integer] :: Number of OpenMP threads to use upon execution










	
function  zFORp_stream_omp_chunk_size(stream)

	Wrapper for zfp_stream_omp_chunk_size()


	Parameters:

	stream [zFORp_stream,in] :: Compressed stream



	Return:

	chunk_size_blocks [integer (kind=8)] :: Specified chunk size, in blocks










	
function  zFORp_stream_set_execution(stream, execution_policy)

	Wrapper for zfp_stream_set_execution()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	execution_policy [integer,in] :: zFORp_exec enum indicating desired execution policy






	Return:

	is_success [integer] :: Indicate whether execution policy was successfully set (1) or not (0)










	
function  zFORp_stream_set_omp_threads(stream, thread_count)

	Wrapper for zfp_stream_set_omp_threads()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	thread_count [integer,in] :: Desired number of OpenMP threads






	Return:

	is_success [integer] :: Indicate whether number of threads was successfully set (1) or not (0)










	
function  zFORp_stream_set_omp_chunk_size(stream, chunk_size)

	Wrapper for zfp_stream_set_omp_chunk_size()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	chunk_size [integer,in] :: Desired chunk size, in blocks






	Return:

	is_success [integer] :: Indicate whether chunk size was successfully set (1) or not (0)











Array Metadata


	
function  zFORp_field_alloc()

	Wrapper for zfp_field_alloc()


	Return:

	field [zFORp_field] :: Newly allocated field










	
function  zFORp_field_1d(uncompressed_ptr, scalar_type, nx)

	Wrapper for zfp_field_1d()


	Parameters:

	
	uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data


	scalar_type [integer,in] :: zFORp_type enum describing uncompressed scalar type


	nx [integer,in] :: Number of array elements






	Return:

	field [zFORp_field] :: Newly allocated field










	
function  zFORp_field_2d(uncompressed_ptr, scalar_type, nx, ny)

	Wrapper for zfp_field_2d()


	Parameters:

	
	uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data


	scalar_type [integer,in] :: zFORp_type enum describing uncompressed scalar type


	nx [integer,in] :: Number of array elements in x dimension


	ny [integer,in] :: Number of array elements in y dimension






	Return:

	field [zFORp_field] :: Newly allocated field










	
function  zFORp_field_3d(uncompressed_ptr, scalar_type, nx, ny, nz)

	Wrapper for zfp_field_3d()


	Parameters:

	
	uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data


	scalar_type [integer,in] :: zFORp_type enum describing uncompressed scalar type


	nx [integer,in] :: Number of array elements in x dimension


	ny [integer,in] :: Number of array elements in y dimension


	nz [integer,in] :: Number of array elements in z dimension






	Return:

	field [zFORp_field] :: Newly allocated field










	
function  zFORp_field_4d(uncompressed_ptr, scalar_type, nx, ny, nz, nw)

	Wrapper for zfp_field_4d()


	Parameters:

	
	uncompressed_ptr [c_ptr,in] :: Pointer to uncompressed data


	scalar_type [integer,in] :: zFORp_type enum describing uncompressed scalar type


	nx [integer,in] :: Number of array elements in x dimension


	ny [integer,in] :: Number of array elements in y dimension


	nz [integer,in] :: Number of array elements in z dimension


	nw [integer,in] :: Number of array elements in w dimension






	Return:

	field [zFORp_field] :: Newly allocated field










	
subroutine  zFORp_field_free(field)

	Wrapper for zfp_field_free()


	Parameters:

	field [zFORp_field,inout] :: Field metadata










	
function  zFORp_field_pointer(field)

	Wrapper for zfp_field_pointer()


	Parameters:

	field [zFORp_field,in] :: Field metadata



	Return:

	arr_ptr [c_ptr] :: Pointer to raw (uncompressed/decompressed) array










	
function  zFORp_field_scalar_type(field)

	Wrapper for zfp_field_type()


	Parameters:

	field [zFORp_field,in] :: Field metadata



	Return:

	scalar_type [integer] :: zFORp_type enum describing uncompressed scalar type










	
function  zFORp_field_precision(field)

	Wrapper for zfp_field_precision()


	Parameters:

	field [zFORp_field,in] :: Field metadata



	Return:

	prec [integer] :: Scalar type precision in number of bits










	
function  zFORp_field_dimensionality(field)

	Wrapper for zfp_field_dimensionality()


	Parameters:

	field [zFORp_field,in] :: Field metadata



	Return:

	dims [integer] :: Dimensionality of array










	
function  zFORp_field_size(field, size_arr)

	Wrapper for zfp_field_size()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	size_arr [integer,dimension(4),target,inout] :: Integer array to write field dimensions into






	Return:

	total_size [integer (kind=8)] :: Total number of array elements










	
function  zFORp_field_stride(field, stride_arr)

	Wrapper for zfp_field_stride()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	stride_arr [integer,dimension(4),target,inout] :: Integer array to write strides into






	Return:

	is_strided [integer] :: Indicate whether field is strided (1) or not (0)










	
function  zFORp_field_metadata(field)

	Wrapper for zfp_field_metadata()


	Parameters:

	field [zFORp_field,in] :: Field metadata



	Return:

	encoded_metadata [integer (kind=8)] :: Compact encoding of metadata










	
subroutine  zFORp_field_set_pointer(field, arr_ptr)

	Wrapper for zfp_field_set_pointer()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	arr_ptr [c_ptr,in] :: Pointer to beginning of uncompressed array













	
function  zFORp_field_set_type(field, scalar_type)

	Wrapper for zfp_field_set_type()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	scalar_type [integer] :: zFORp_type enum indicating desired scalar type






	Return:

	type_result [integer] :: zFORp_type enum indicating actual scalar type










	
subroutine  zFORp_field_set_size_1d(field, nx)

	Wrapper for zfp_field_set_size_1d()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	nx [integer,in] :: Number of array elements













	
subroutine  zFORp_field_set_size_2d(field, nx, ny)

	Wrapper for zfp_field_set_size_2d()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	nx [integer,in] :: Number of array elements in x dimension


	ny [integer,in] :: Number of array elements in y dimension













	
subroutine  zFORp_field_set_size_3d(field, nx, ny, nz)

	Wrapper for zfp_field_set_size_3d()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	nx [integer,in] :: Number of array elements in x dimension


	ny [integer,in] :: Number of array elements in y dimension


	nz [integer,in] :: Number of array elements in z dimension













	
subroutine  zFORp_field_set_size_4d(field, nx, ny, nz, nw)

	Wrapper for zfp_field_set_size_4d()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	nx [integer,in] :: Number of array elements in x dimension


	ny [integer,in] :: Number of array elements in y dimension


	nz [integer,in] :: Number of array elements in z dimension


	nw [integer,in] :: Number of array elements in w dimension













	
subroutine  zFORp_field_set_stride_1d(field, sx)

	Wrapper for zfp_field_set_stride_1d()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	sx [integer,in] :: Stride in number of scalars













	
subroutine  zFORp_field_set_stride_2d(field, sx, sy)

	Wrapper for zfp_field_set_stride_2d()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	sx [integer,in] :: Stride in x dimension


	sy [integer,in] :: Stride in y dimension













	
subroutine  zFORp_field_set_stride_3d(field, sx, sy, sz)

	Wrapper for zfp_field_set_stride_3d()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	sx [integer,in] :: Stride in x dimension


	sy [integer,in] :: Stride in y dimension


	sz [integer,in] :: Stride in z dimension













	
subroutine  zFORp_field_set_stride_4d(field, sx, sy, sz, sw)

	Wrapper for zfp_field_set_stride_4d()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	sx [integer,in] :: Stride in x dimension


	sy [integer,in] :: Stride in y dimension


	sz [integer,in] :: Stride in z dimension


	sw [integer,in] :: Stride in w dimension













	
function  zFORp_field_set_metadata(field, encoded_metadata)

	Wrapper for zfp_field_set_metadata()


	Parameters:

	
	field [zFORp_field,in] :: Field metadata


	encoded_metadata [integer (kind=8),in] :: Compact encoding of metadata






	Return:

	is_success [integer] :: Indicate whether metadata was successfully set (1) or not (0)











Compression and Decompression


	
function  zFORp_compress(stream, field)

	Wrapper for zfp_compress()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	field [zFORp_field,in] :: Field metadata






	Return:

	bitstream_offset_bytes [integer (kind=8)] :: Bit stream offset after compression, in bytes, or zero on failure










	
function  zFORp_decompress(stream, field)

	Wrapper for zfp_decompress()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	field [zFORp_field,in] :: Field metadata






	Return:

	bitstream_offset_bytes [integer (kind=8)] :: Bit stream offset after decompression, in bytes, or zero on failure










	
function  zFORp_write_header(stream, field, mask)

	Wrapper for zfp_write_header()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	field [zFORp_field,in] :: Field metadata


	mask [integer,in] :: Bit mask indicating which parts of header to write






	Return:

	num_bits_written [integer (kind=8)] :: Number of header bits written or zero on failure










	
function  zFORp_read_header(stream, field, mask)

	Wrapper for zfp_read_header()


	Parameters:

	
	stream [zFORp_stream,in] :: Compressed stream


	field [zFORp_field,in] :: Field metadata


	mask [integer,in] :: Bit mask indicating which parts of header to read






	Return:

	num_bits_read [integer (kind=8)] :: Number of header bits read or zero on failure
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Tutorial

This tutorial provides examples that illustrate how to use the zfp
library and compressed arrays, and includes code snippets that show
the order of declarations and function calls needed to use the
compressor.

This tutorial is divided into three parts: the high-level libzfp
library; the low-level
compression codecs; and the
compressed array classes (in that order).  Users
interested only in the compressed arrays, which do not directly expose
anything related to compression other than compression
rate control, may safely skip the next two
sections.

All code examples below are for 3D arrays of doubles, but it should be
clear how to modify the function calls for single precision and for 1D,
2D, or 4D arrays.


High-Level C Interface

Users concerned only with storing their floating-point data compressed may
use zfp as a black box that maps a possibly non-contiguous floating-point
array to a compressed bit stream.  The intent of libzfp is to provide both
a high- and low-level interface to the compressor that can be called from
both C and C++ (and possibly other languages).  libzfp supports strided
access, e.g., for compressing vector fields one scalar at a time, or for
compressing arrays of structs.

Consider compressing the 3D C/C++ array

// define an uncompressed array
double a[nz][ny][nx];





where nx, ny, and nz can be any positive dimensions.


Note

In multidimensional arrays, the order in which dimensions are specified
is important.  In zfp, the memory layout convention is such that x
varies faster than y, which varies faster than z, and hence x should
map to the innermost (rightmost) array dimension in a C array and to the
leftmost dimension in a Fortran array.  Getting the order of dimensions
right is crucial for good compression and accuracy.  See the discussion of
dimensions and strides for further information.
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File Compressor

The zfp executable in the bin directory is primarily
intended for evaluating the rate-distortion (compression ratio and quality)
provided by the compressor, but since version 0.5.0 also allows reading and
writing compressed data sets.  zfp takes as input a raw, binary
array of floats, doubles, or integers in native byte order and optionally
outputs a compressed or reconstructed array obtained after lossy compression
followed by decompression.  Various statistics on compression ratio and
error are also displayed.

The uncompressed input and output files should be a flattened, contiguous
sequence of scalars without any header information, generated for instance
by

double* data = new double[nx * ny * nz];
// populate data
FILE* file = fopen("data.bin", "wb");
fwrite(data, sizeof(*data), nx * ny * nz, file);
fclose(file);





zfp requires a set of command-line options, the most important
being the -i option that specifies that the input is uncompressed.
When present, -i tells zfp to read an uncompressed input
file and compress it to memory.  If desired, the compressed stream can be
written to an output file using -z.  When -i is absent,
on the other hand, -z names the compressed input (not output) file,
which is then decompressed.  In either case, -o can be used to
output the reconstructed array resulting from lossy compression and
decompression.

So, to compress a file, use -i file.in -z file.zfp.  To later
decompress the file, use -z file.zfp -o file.out.  A single dash
“-” can be used in place of a file name to denote standard input or output.

When reading uncompressed input, the scalar type must be specified using
-f (float) or -d (double), or using -t
for integer-valued data.  In addition, the array dimensions must be specified
using -1 (for 1D arrays), -2 (for 2D arrays),
-3 (for 3D arrays), or -4 (for 4D arrays).
For multidimensional arrays, x varies faster than y, which in turn
varies faster than z, and so on.  That is, a 4D input file corresponding
to a flattened C array a[nw][nz][ny][nx] is specified as
-4 nx ny nz nw.


Note

Note that -2 nx ny is not equivalent to -3 nx ny 1, even
though the same number of values are compressed.  One invokes the 2D codec,
while the other uses the 3D codec, which in this example has to pad the
input to an nx × ny × 4 array since arrays are partitioned
into blocks of dimensions 4d.  Such padding usually negatively impacts
compression.
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Code Examples

The examples directory includes five programs that make use of the
compressor.


Simple Compressor

The simple program is a minimal example that shows how to call
the compressor and decompressor on a double-precision 3D array.  Without
the -d option, it will compress the array and write the compressed
stream to standard output.  With the -d option, it will instead
read the compressed stream from standard input and decompress the
array:

simple > compressed.zfp
simple -d < compressed.zfp





For a more elaborate use of the compressor, see the
zfp utility.



Diffusion Solver

The diffusion example is a simple forward Euler solver for the
heat equation on a 2D regular grid, and is intended to show how to declare
and work with zfp’s compressed arrays, as well as give an idea of how
changing the compression rate and cache size affects the error in the
solution and solution time.  The usage is:

diffusion [-i] [-n nx ny] [-p] [-t nt] [-r rate] [-c blocks]





where rate specifies the exact number of compressed bits to store per
double-precision floating-point value (default = 64); nx and ny
specify the grid size (default = 100 × 100); nt specifies the number
of time steps to take (the default is to run until time t = 1); and blocks
is the number of uncompressed blocks to cache (default = nx / 2).  The
-i option enables array traversal via iterators instead of indices.

The -p option enables OpenMP parallel execution, which makes use
of both mutable and immutable private views
for thread-safe array access.  Note that this example has not been
optimized for parallel performance, but rather serves to show how to
work with zfp’s compressed arrays in a multithreaded setting.

Running diffusion with the following arguments:

diffusion -r 8
diffusion -r 12
diffusion -r 20
diffusion -r 64





should result in this output:

rate=8 sum=0.996442 error=4.813938e-07
rate=12 sum=0.998338 error=1.967777e-07
rate=20 sum=0.998326 error=1.967952e-07
rate=64 sum=0.998326 error=1.967957e-07





For speed and quality comparison, the solver solves the same problem using
uncompressed double-precision arrays when -r is omitted.

The diffusionC program is the same example written entirely
in C using the cfp wrappers around the C++ compressed array
classes.



Speed Benchmark

The speed program takes two optional parameters:

speed [rate] [blocks]





It measures the throughput of compression and decompression of 3D
double-precision data (in megabytes of uncompressed data per second).
By default, a rate of 1 bit/value and two million blocks are
processed.



PGM Image Compression

The pgm program illustrates how zfp can be used to compress
grayscale images in the
pgm format [http://netpbm.sourceforge.net/doc/pgm.html].  The usage is:

pgm <param> <input.pgm >output.pgm





If param is positive, it is interpreted as the rate in bits per pixel,
which ensures that each block of 4 × 4 pixels is compressed to a fixed
number of bits, as in texture compression codecs.
If param is negative, then fixed-precision mode is used with precision
-param, which tends to give higher quality for the same rate.  This
use of zfp is not intended to compete with existing texture and image
compression formats, but exists merely to demonstrate how to compress 8-bit
integer data with zfp.  See FAQs #20 and
#21 for information on the effects of setting the
precision.



In-place Compression

The inplace example shows how one might use zfp to perform in-place
compression and decompression when memory is at a premium.  Here the
floating-point array is overwritten with compressed data, which is later
decompressed back in place.  This example also shows how to make use of
some of the low-level features of zfp, such as its low-level, block-based
compression API and bit stream functions that perform seeks on the bit
stream.  The program takes one optional argument:

inplace [tolerance]





which specifies the fixed-accuracy absolute tolerance to use during
compression.  Please see FAQ #19 for more on the
limitations of in-place compression.



Iterators

The iterator example illustrates how to use zfp’s
compressed-array iterators and pointers for traversing arrays.  For
instance, it gives an example of sorting a 1D compressed array
using std::sort().  This example takes no command-line
options.
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Regression Tests

The testzfp program performs basic regression testing by exercising
a small but important subset of libzfp and the compressed array
classes.  It serves as a sanity check that zfp has been built properly.
These tests assume the default compiler settings, i.e., with none of the
settings in Config or CMakeLists.txt modified.  By default,
small, synthetic floating-point arrays are used in the test.  To test larger
arrays, use the large command-line option.  When large arrays are
used, the (de)compression throughput is also measured and reported in number
of uncompressed bytes per second.

More extensive unit and functional tests are available on the zfp GitHub
develop branch [https://github.com/LLNL/zfp/tree/develop] in the
tests directory.
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FAQ

The following is a list of answers to frequently asked questions.  For
questions not answered here or elsewhere in the documentation, please
e-mail Peter Lindstrom.

Questions answered in this FAQ:



	Can zfp compress vector fields?


	Should I declare a 2D array as zfp::array1d a(nx * ny, rate)?


	How can I initialize a zfp compressed array from disk?


	Can I use zfp to represent dense linear algebra matrices?


	Can zfp compress logically regular but geometrically irregular data?


	Does zfp handle infinities, NaNs,and subnormal floating-point numbers?


	Can zfp handle data with some missing values?


	Can I use zfp to store integer data?


	Can I compress 32-bit integers using zfp?


	Why does zfp corrupt memory if my allocated buffer is too small?


	Are zfp compressed streams portable across platforms?


	How can I achieve finer rate granularity?


	Can I generate progressive zfp streams?


	How do I initialize the decompressor?


	Must I use the same parameters during compression and decompression?


	Do strides have to match during compression and decompression?


	Why does zfp sometimes not respect my error tolerance?


	Why is the actual rate sometimes not what I requested?


	Can zfp perform compression in place?


	How should I set the precision to bound the relative error?


	Does zfp support lossless compression?


	Why is my actual, measured error so much smaller than the tolerance?


	Are parallel compressed streams identical to serial streams?


	Are zfp arrays and other data structures thread-safe?


	Why does parallel compression performance not match my expectations?


	Why are compressed arrays so slow?


	Do compressed arrays use reference counting?









Q1: Can zfp compress vector fields?

I have a 2D vector field

double velocity[ny][nx][2];





of dimensions nx × ny.  Can I use a 3D zfp array to store this as:

array3d velocity(2, nx, ny, rate);





A: Although this could be done, zfp assumes that consecutive values are
related.  The two velocity components (vx, vy) are almost suredly
independent and would not be correlated.  This will severely hurt the
compression rate or quality.  Instead, consider storing vx and vy as
two separate 2D scalar arrays:

array2d vx(nx, ny, rate);
array2d vy(nx, ny, rate);





or as

array2d velocity[2] = {array2d(nx, ny, rate), array2d(nx, ny, rate)};







Q2: Should I declare a 2D array as zfp::array1d a(nx * ny, rate)?

I have a 2D scalar field of dimensions nx × ny that I allocate as

double* a = new double[nx * ny];





and index as

a[x + nx * y]





Should I use a corresponding zfp array

array1d a(nx * ny, rate);





to store my data in compressed form?

A: Although this is certainly possible, if the scalar field exhibits
coherence in both spatial dimensions, then far better results can be
achieved by using a 2D array:

array2d a(nx, ny, rate);





Although both compressed arrays can be indexed as above, the 2D array can
exploit smoothness in both dimensions and improve the quality dramatically
for the same rate.

Since zfp 0.5.2, proxy pointers are also available that act much like
the flat double*.



Q3: How can I initialize a zfp compressed array from disk?

I have a large, uncompressed, 3D data set:

double a[nz][ny][nx];





stored on disk that I would like to read into a compressed array.  This data
set will not fit in memory uncompressed.  What is the best way of doing this?

A: Using a zfp array:

array3d a(nx, ny, nz, rate);





the most straightforward (but perhaps not best) way is to read one
floating-point value at a time and copy it into the array:

for (uint z = 0; z < nz; z++)
  for (uint y = 0; y < ny; y++)
    for (uint x = 0; x < nx; x++) {
      double f;
      if (fread(&f, sizeof(f), 1, file) == 1)
        a(x, y, z) = f;
      else {
        // handle I/O error
      }
    }





Note, however, that if the array cache is not large enough, then this may
compress blocks before they have been completely filled.  Therefore it is
recommended that the cache holds at least one complete layer of blocks,
i.e., (nx / 4) × (ny / 4) blocks in the example above.

To avoid inadvertent evictions of partially initialized blocks, it is better
to buffer four layers of nx × ny values each at a time, when
practical, and to completely initialize one block after another, which is
facilitated using zfp’s iterators:

double* buffer = new double[nx * ny * 4];
int zmin = -4;
for (zfp::array3d::iterator it = a.begin(); it != a.end(); it++) {
  int x = it.i();
  int y = it.j();
  int z = it.k();
  if (z > zmin + 3) {
    // read another layer of blocks
    if (fread(buffer, sizeof(*buffer), nx * ny * 4, file) != nx * ny * 4) {
      // handle I/O error
    }
    zmin += 4;
  }
  a(x, y, z) = buffer[x + nx * (y + ny * (z - zmin))];
}





Iterators have been available since zfp 0.5.2.



Q4: Can I use zfp to represent dense linear algebra matrices?

A: Yes, but your mileage may vary.  Dense matrices, unlike smooth scalar
fields, rarely exhibit correlation between adjacent rows and columns.  Thus,
the quality or compression ratio may suffer.



Q5: Can zfp compress logically regular but geometrically irregular data?

My data is logically structured but irregularly sampled, e.g., it is
rectilinear, curvilinear, or Lagrangian, or uses an irregular spacing of
quadrature points.  Can I still use zfp to compress it?

A: Yes, as long as the data is (or can be) represented as a logical
multidimensional array, though your mileage may vary.  zfp has been designed
for uniformly sampled data, and compression will in general suffer the more
irregular the sampling is.



Q6: Does zfp handle infinities, NaNs,and subnormal floating-point numbers?

A: Yes, but only in reversible mode.

zfp’s lossy compression modes currently support only finite
floating-point values.  If a block contains a NaN or an infinity, undefined
behavior is invoked due to the C math function frexp() being
undefined for non-numbers.  Subnormal numbers are, however, handled correctly.



Q7: Can zfp handle data with some missing values?

My data has some missing values that are flagged by very large numbers, e.g.
1e30.  Is that OK?

A: Although all finite numbers are “correctly” handled, such large sentinel
values are likely to pollute nearby values, because all values within a block
are expressed with respect to a common largest exponent.  The presence of
very large values may result in complete loss of precision of nearby, valid
numbers.  Currently no solution to this problem is available, but future
versions of zfp will likely support a bit mask to tag values that should be
excluded from compression.



Q8: Can I use zfp to store integer data?

Can I use zfp to store integer data such as 8-bit quantized images or 16-bit
digital elevation models?

A: Yes (as of version 0.4.0), but the data has to be promoted to 32-bit signed
integers first.  This should be done one block at a time using an appropriate
zfp_promote_*_to_int32() function call (see zfp.h).  Future
versions of zfp may provide a high-level interface that automatically
performs promotion and demotion.

Note that the promotion functions shift the low-precision integers into the
most significant bits of 31-bit (not 32-bit) integers and also convert unsigned
to signed integers.  Do use these functions rather than simply casting 8-bit
integers to 32 bits to avoid wasting compressed bits to encode leading zeros.
Moreover, in fixed-precision mode, set the precision relative to the precision
of the (unpromoted) source data.

As of version 0.5.1, integer data is supported both by the low-level API and
high-level calls zfp_compress() and zfp_decompress().



Q9: Can I compress 32-bit integers using zfp?

I have some 32-bit integer data.  Can I compress it using zfp’s 32-bit
integer support?

A: Yes, this can safely be done in reversible mode.

In other (lossy) modes, the answer depends.
zfp compression of 32-bit and 64-bit integers requires that each
integer f have magnitude |f| < 230 and
|f| < 262, respectively.  To handle signed integers that
span the entire range −231 ≤ x < 231, or
unsigned integers 0 ≤ x < 232, the data has to be promoted to
64 bits first.

As with floating-point data, the integers should ideally represent a
quantized continuous function rather than, say, categorical data or set of
indices.  Depending on compression settings and data range, the integers may
or may not be losslessly compressed.  If fixed-precision mode is used, the
integers may be stored at less precision than requested.
See Q21 for more details on precision and lossless
compression.



Q10: Why does zfp corrupt memory if my allocated buffer is too small?

Why does zfp corrupt memory rather than return an error code if not enough
memory is allocated for the compressed data?

A: This is for performance reasons.  zfp was primarily designed for fast
random access to fixed-rate compressed arrays, where checking for buffer
overruns is unnecessary.  Adding a test for every compressed byte output
would significantly compromise performance.

One way around this problem (when not in fixed-rate mode) is to use the
maxbits parameter in conjunction with the maximum precision or
maximum absolute error parameters to limit the size of compressed blocks.
Finally, the function zfp_stream_maximum_size() returns a conservative
buffer size that is guaranteed to be large enough to hold the compressed data
and the optional header.



Q11: Are zfp compressed streams portable across platforms?

Are zfp compressed streams portable across platforms?  Are there, for
example, endianness issues?

A: Yes, zfp can write portable compressed streams.  To ensure portability
across different endian platforms, the bit stream must however be written
in increments of single bytes on big endian processors (e.g., PowerPC, SPARC),
which is achieved by compiling zfp with an 8-bit (single-byte) word size:

-DBIT_STREAM_WORD_TYPE=uint8





See BIT_STREAM_WORD_TYPE.  Note that on little endian processors
(e.g., Intel x86-64 and AMD64), the word size does not affect the bit stream
produced, and thus the default word size may be used.  By default, zfp uses
a word size of 64 bits, which results in the coarsest rate granularity but
fastest (de)compression.  If cross-platform portability is not needed, then
the maximum word size is recommended (but see also Q12).

When using 8-bit words, zfp produces a compressed stream that is byte order
independent, i.e., the exact same compressed sequence of bytes is generated
on little and big endian platforms.  When decompressing such streams,
floating-point and integer values are recovered in the native byte order of
the machine performing decompression.  The decompressed values can be used
immediately without the need for byte swapping and without having to worry
about the byte order of the computer that generated the compressed stream.

Finally, zfp assumes that the floating-point format conforms to IEEE 754.
Issues may arise on architectures that do not support IEEE floating point.



Q12: How can I achieve finer rate granularity?

A: For d-dimensional arrays, zfp supports a rate granularity of 8 / 4d
bits, i.e., the rate can be specified in increments of a fraction of a bit for
2D and 3D arrays.  Such fine rate selection is always available for sequential
compression (e.g., when calling zfp_compress()).

Unlike in sequential compression, zfp’s compressed arrays require random
access writes, which are supported only at the granularity of whole words.
By default, a word is 64 bits, which gives a rate granularity of
64 / 4d in d dimensions, i.e., 16 bits in 1D, 4 bits in 2D, and 1 bit
in 3D.

To achieve finer granularity, recompile zfp with a smaller (but as large as
possible) stream word size, e.g.:

-DBIT_STREAM_WORD_TYPE=uint8





gives the finest possible granularity, but at the expense of (de)compression
speed.  See BIT_STREAM_WORD_TYPE.



Q13: Can I generate progressive zfp streams?

A: Yes, but it requires some coding effort.  There is currently no high-level
support for progressive zfp streams.  To implement progressive fixed-rate
streams, the fixed-length bit streams should be interleaved among the blocks
that make up an array.  For instance, if a 3D array uses 1024 bits per block,
then those 1024 bits could be broken down into, say, 16 pieces of 64 bits
each, resulting in 16 discrete quality settings.  By storing the blocks
interleaved such that the first 64 bits of all blocks are contiguous,
followed by the next 64 bits of all blocks, etc., one can achieve progressive
decompression by setting the zfp_stream.maxbits parameter (see
zfp_stream_set_params()) to the number of bits per block received so
far.

To enable interleaving of blocks, zfp must first be compiled with:

-DBIT_STREAM_STRIDED





to enable strided bit stream access.  In the example above, if the stream
word size is 64 bits and there are n blocks, then:

stream_set_stride(stream, m, n);





implies that after every m 64-bit words have been decoded, the bit stream
is advanced by m × n words to the next set of m 64-bit words
associated with the block.



Q14: How do I initialize the decompressor?

A: The zfp_stream and zfp_field objects usually need to
be initialized with the same values as they had during compression (but see
Q15 for exceptions).
These objects hold the compression mode and parameters, and field data like
the scalar type and dimensions.  By default, these parameters are not stored
with the compressed stream (the “codestream”) and prior to zfp 0.5.0 had to
be maintained separately by the application.

Since version 0.5.0, functions exist for reading and writing a 12- to 19-byte
header that encodes compression and field parameters.  For applications that
wish to embed only the compression parameters, e.g., when the field dimensions
are already known, there are separate functions that encode and decode this
information independently.



Q15: Must I use the same parameters during compression and decompression?

A: Not necessarily.  When decompressing one block at a time, it is possible
to use more tightly constrained zfp_stream parameters during
decompression than were used during compression.  For instance, one may use a
larger zfp_stream.minbits, smaller zfp_stream.maxbits,
smaller zfp_stream.maxprec, or larger zfp_stream.minexp
during decompression to process fewer compressed bits than are stored, and to
decompress the array more quickly at a lower precision.  This may be useful
in situations where the precision and accuracy requirements are not known a
priori, thus forcing conservative settings during compression, or when the
compressed stream is used for multiple purposes.  For instance, visualization
usually has less stringent precision requirements than quantitative data
analysis.  This feature of decompressing to a lower precision is particularly
useful when the stream is stored progressively (see Q13).

Note that one may not use less constrained parameters during decompression,
e.g., one cannot ask for more than zfp_stream.maxprec bits of
precision when decompressing.  Furthermore, the parameters must agree between
compression and decompression when calling the high-level API function
zfp_decompress().

Currently float arrays have a different compressed representation from
compressed double arrays due to differences in exponent width.  It is not
possible to compress a double array and then decompress (demote) the result
to floats, for instance.  Future versions of the zfp codec may use a unified
representation that does allow this.



Q16: Do strides have to match during compression and decompression?

A: No.  For instance, a 2D vector field:

float in[ny][nx][2];





could be compressed as two scalar fields with strides sx = 2,
sy = 2 × nx, and with pointers &in[0][0][0] and
&in[0][0][1] to the first value of each scalar field.  These two
scalar fields can later be decompressed as non-interleaved fields:

float out[2][ny][nx];





using strides sx = 1, sy = nx and pointers &out[0][0][0]
and &out[1][0][0].



Q17: Why does zfp sometimes not respect my error tolerance?

A: First, zfp does not support
fixed-accuracy mode for integer data and
will ignore any tolerance requested via zfp_stream_set_accuracy()
or associated expert mode parameter settings.

For floating-point data, zfp does not store each scalar value independently
but represents a group of values (4, 16, 64, or 256 values, depending on
dimensionality) as linear combinations like averages by evaluating arithmetic
expressions.  Just like in uncompressed IEEE floating-point arithmetic, both
representation error and roundoff error in the least significant bit(s) often
occur.

To illustrate this, consider compressing the following 1D array of four
floats:

float f[4] = { 1, 1e-1, 1e-2, 1e-3 };





using the zfp command-line tool:

zfp -f -1 4 -a 0 -i input.dat -o output.dat





In spite of an error tolerance of zero, the reconstructed values are:

float g[4] = { 1, 1e-1, 9.999998e-03, 9.999946e-04 };





with a (computed) maximum error of 5.472e-9.  Because f[3] = 1e-3 can only
be approximately represented in radix-2 floating-point, the actual error
is even smaller: 5.424e-9.  This reconstruction error is primarily due to
zfp’s block-floating-point representation, which expresses the four values
in a block relative to a single, common binary exponent.  Such exponent
alignment occurs also in regular IEEE floating-point operations like addition.
For instance,:

float x = (f[0] + f[3]) - 1;





should of course result in x = f[3] = 1e-3, but due to exponent
alignment a few of the least significant bits of f[3] are lost in the
addition, giving a result of x = 1.0000467e-3 and a roundoff error
of 4.668e-8.  Similarly,:

float sum = f[0] + f[1] + f[2] + f[3];





should return sum = 1.111, but is computed as 1.1110000610.  Moreover,
the value 1.111 cannot even be represented exactly in (radix-2) floating-point;
the closest float is 1.1109999.  Thus the computed error:

float error = sum - 1.111f;





which itself has some roundoff error, is 1.192e-7.

Phew!  Note how the error introduced by zfp (5.472e-9) is in fact one to
two orders of magnitude smaller than the roundoff errors (4.668e-8 and
1.192e-7) introduced by IEEE floating-point in these computations.  This lower
error is in part due to zfp’s use of 30-bit significands compared to IEEE’s
24-bit single-precision significands.  Note that data sets with a large dynamic
range, e.g., where adjacent values differ a lot in magnitude, are more
susceptible to representation errors.

The moral of the story is that error tolerances smaller than machine epsilon
(relative to the data range) cannot always be satisfied by zfp.  Nor are such
tolerances necessarily meaningful for representing floating-point data that
originated in floating-point arithmetic expressions, since accumulated
roundoff errors are likely to swamp compression errors.  Because such roundoff
errors occur frequently in floating-point arithmetic, insisting on lossless
compression on the grounds of accuracy is tenuous at best.



Q18: Why is the actual rate sometimes not what I requested?

A: In principle, zfp allows specifying the size of a compressed block in
increments of single bits, thus allowing very fine-grained tuning of the
bit rate.  There are, however, cases when the desired rate does not exactly
agree with the effective rate, and users are encouraged to check the return
value of zfp_stream_set_rate(), which gives the actual rate.

There are several reasons why the requested rate may not be honored.  First,
the rate is specified in bits/value, while zfp always represents a block
of 4d values in d dimensions, i.e., using
N = 4d × rate bits.  N must be an integer number of bits,
which constrains the actual rate to be a multiple of 1 / 4d.  The actual
rate is computed by rounding 4d times the desired rate.

Second, if the array dimensions are not multiples of four, then zfp pads the
dimensions to the next higher multiple of four.  Thus, the total number of
bits for a 2D array of dimensions nx × ny is computed in terms of
the number of blocks bx × by:

bitsize = (4 * bx) * (4 * by) * rate





where nx ≤ 4 × bx < nx + 4 and
ny ≤ 4 × by < ny + 4.  When amortizing bitsize over the
nx × ny values, a slightly higher rate than requested may result.

Third, to support updating compressed blocks, as is needed by zfp’s
compressed array classes, the user may request write random access to the
fixed-rate stream.  To support this, each block must be aligned on a stream
word boundary (see Q12), and therefore the rate when
write random access is requested must be a multiple of wordsize / 4d
bits.  By default wordsize = 64 bits.

Fourth, for floating-point data, each block must hold at least the common
exponent and one additional bit, which places a lower bound on the rate.

Finally, the user may optionally include a header with each array.  Although
the header is small, it must be accounted for in the rate.  The function
zfp_stream_maximum_size() conservatively includes space for a header,
for instance.



Q19: Can zfp perform compression in place?

A: Because the compressed data tends to be far smaller than the uncompressed
data, it is natural to ask if the compressed stream can overwrite the
uncompressed array to avoid having to allocate separate storage for the
compressed stream.  zfp does allow for the possibility of such in-place
compression, but with several caveats and restrictions:



	A bitstream must be created whose buffer points to the beginning of
uncompressed (and to be compressed) storage.


	The array must be compressed using zfp’s low-level API.  In particular,
the data must already be partitioned and organized into contiguous blocks
so that all values of a block can be pulled out once and then replaced
with the corresponding shorter compressed representation.


	No one compressed block can occupy more space than its corresponding
uncompressed block so that the not-yet compressed data is not overwritten.
This is usually easily accomplished in fixed-rate mode, although the
expert interface also allows guarding against this in all modes using the
zfp_stream.maxbits parameter.  This parameter should be set to
maxbits = 4^d * 8 * sizeof(type), where d is the array
dimensionality (1, 2, or 3) and where type is the scalar type of the
uncompressed data.


	No header information may be stored in the compressed stream.







In-place decompression can also be achieved, but in addition to the above
constraints requires even more care:



	The data must be decompressed in reverse block order, so that the last
block is decompressed first to the end of the block array.  This requires
the user to maintain a pointer to uncompressed storage and to seek via
stream_rseek() to the proper location in the compressed stream
where the block is stored.


	The space allocated to the compressed stream must be large enough to
also hold the uncompressed data.







An example is provided that shows how in-place compression
can be done.



Q20: How should I set the precision to bound the relative error?

A: In general, zfp cannot bound the point-wise relative error due to its
use of a block-floating-point representation, in which all values within a
block are represented in relation to a single common exponent.  For a high
enough dynamic range within a block there may simply not be enough precision
available to guard against loss.  For instance, a block containing the values
20 = 1 and 2-n would require a precision of n + 3 bits to
represent losslessly, and zfp uses at most 64-bit integers to represent
values.  Thus, if n ≥ 62, then 2-n is replaced with 0, which
is a 100% relative error.  Note that such loss also occurs when, for instance,
20 and 2-n are added using floating-point arithmetic (see
also Q17).

It is, however, possible to bound the error relative to the largest (in
magnitude) value, fmax, within a block, which if the magnitude of values
does not change too rapidly may serve as a reasonable proxy for point-wise
relative errors.

One might then ask if using zfp’s fixed-precision mode with p bits of
precision ensures that the block-wise relative error is at most
2-p × fmax.  This is, unfortunately, not the case, because
the requested precision, p, is ensured only for the transform coefficients.
During the inverse transform of these quantized coefficients the quantization
error may amplify.  That being said, it is possible to derive a bound on the
error in terms of p that would allow choosing an appropriate precision.
Such a bound is derived below.

Let

emax = floor(log2(fmax))





be the largest base-2 exponent within a block.  For transform coefficient
precision, p, one can show that the maximum absolute error, err, is
bounded by:

err <= k(d) * (2^emax / 2^p) <= k(d) * (fmax / 2^p)





Here k(d) is a constant that depends on the data dimensionality d:

k(d) = 20 * (15/4)^(d-1)





so that in 1D, 2D, 3D, and 4D we have:

k(1) = 20
k(2) = 125
k(3) = 1125/4
k(4) = 16876/16





Thus, to guarantee n bits of accuracy in the decompressed data, we need
to choose a higher precision, p, for the transform coefficients:

p(n, d) = n + ceil(log2(k(d))) = n + 2 * d + 3





so that

p(n, 1) = n + 5
p(n, 2) = n + 7
p(n, 3) = n + 9
p(n, 4) = n + 11





This p value should be used in the call to
zfp_stream_set_precision().

Note, again, that some values in the block may have leading zeros when
expressed relative to 2emax, and these leading zeros are counted
toward the n-bit precision.  Using decimal to illustrate this, suppose
we used 4-digit precision for a 1D block containing these four values:

-1.41421e+1 ~ -1.414e+1 = -1414 * (10^1 / 1000)
+2.71828e-1 ~ +0.027e+1 =   +27 * (10^1 / 1000)
+3.14159e-6 ~ +0.000e+1 =     0 * (10^1 / 1000)
+1.00000e+0 ~ +0.100e+1 =  +100 * (10^1 / 1000)





with the values in the middle column aligned to the common base-10 exponent
+1, and with the values on the right expressed as scaled integers.  These
are all represented using four digits of precision, but some of those digits
are leading zeros.



Q21: Does zfp support lossless compression?

A: Yes.  As of zfp 0.5.5, bit-for-bit lossless compression is
supported via the reversible compression mode.
This mode supports both integer and floating-point data.

In addition, it is sometimes possible to ensure lossless compression using
zfp’s fixed-precision and fixed-accuracy modes.  For integer data, zfp
can with few exceptions ensure lossless compression in
fixed-precision mode.
For a given n-bit integer type (n = 32 or n = 64), consider compressing
p-bit signed integer data, with the sign bit counting toward the precision.
In other words, there are exactly 2p possible signed integers.  If
the integers are unsigned, then subtract 2p-1 first so that they
range from −2p-1 to 2p-1 - 1.

Lossless integer compression in fixed-precision mode is achieved by first
promoting the p-bit integers to n - 1 bits (see Q8)
such that all integer values fall in
[−230, +230), when n = 32, or in
[−262, +262), when n = 64.  In other words, the
p-bit integers first need to be shifted left by n - p - 1 bits.  After
promotion, the data should be compressed in zfp’s fixed-precision mode using:

q = p + 4 * d + 1





bits of precision to ensure no loss, where d is the data dimensionality
(1 ≤ d ≤ 4).  Consequently, the p-bit data can be losslessly
compressed as long as p ≤ n - 4 × d - 1.  The table below
lists the maximum precision p that can be losslessly compressed using 32-
and 64-bit integer types.




	d

	n=32

	n=64





	1

	27

	59



	2

	23

	55



	3

	19

	51



	4

	15

	47









Although lossless compression is possible as long as the precision constraint
is met, the precision needed to guarantee no loss is generally much higher
than the precision intrinsic in the uncompressed data.  Therefore, we
recommend using the reversible mode when lossless
compression is desired.

The minimum precision, q, given above is often larger than what
is necessary in practice.  There are worst-case inputs that do require such
large q values, but they are quite rare.

The reason for expanded precision, i.e., why q > p, is that zfp’s
decorrelating transform computes averages of integers, and this transform is
applied d times in d dimensions.  Each average of two p-bit numbers
requires p + 1 bits to avoid loss, and each transform can be thought of
involving up to four such averaging operations.

For floating-point data, fully lossless compression with zfp usually
requires reversible mode, as the other compression
modes are unlikely to guarantee bit-for-bit exact reconstructions.  However,
if the dynamic range is low or varies slowly such that values
within a 4d block have the same or similar exponent, then the
precision gained by discarding the 8 or 11 bits of the common floating-point
exponents can offset the precision lost in the decorrelating transform.  For
instance, if all values in a block have the same exponent, then lossless
compression is obtained using
q = 26 + 4 × d ≤ 32 bits of precision for single-precision data
and q = 55 + 4 × d ≤ 64 bits of precision for double-precision
data.  Of course, the constraint imposed by the available integer precision
n implies that lossless compression of such data is possible only in 1D for
single-precision data and only in 1D and 2D for double-precision data.
Finally, to preserve special values such as negative zero, plus and minues
infinity, and NaNs, reversible mode is needed.



Q22: Why is my actual, measured error so much smaller than the tolerance?

A: For two reasons.  The way zfp bounds the absolute error in
fixed-accuracy mode is by keeping all transform
coefficient bits whose place value exceeds the tolerance while discarding the
less significant bits.  Each such bit has a place value that is a power of
two, and therefore the tolerance must first be rounded down to the next
smaller power of two, which itself will introduce some slack.  This possibly
lower, effective tolerance is returned by the
zfp_stream_set_accuracy() call.

Second, the quantized coefficients are then put through an inverse transform.
This linear transform will combine signed quantization errors that, in the
worst case, may cause them to add up and increase the error, even though the
average (RMS) error remains the same, i.e., some errors cancel while others
compound.  For d-dimensional data, d such inverse transforms are applied,
with the possibility of errors cascading across transforms.  To account for
the worst possible case, zfp has to conservatively lower its internal error
tolerance further, once for each of the d transform passes.

Unless the data is highly oscillatory or noisy, the error is not likely to
be magnified much, leaving an observed error in the decompressed data that
is much lower than the prescribed tolerance.  In practice, the observed
maximum error tends to be about 4-8 times lower than the error tolerance
for 3D data, while the difference is smaller for 2D and 1D data.

We recommend experimenting with tolerances and evaluating what error levels
are appropriate for each application, e.g., by starting with a low,
conservative tolerance and successively doubling it.  The distribution of
errors produced by zfp is approximately Gaussian, so even if the maximum
error may seem large at an individual grid point, most errors tend to be
much smaller and tightly clustered around zero.



Q23: Are parallel compressed streams identical to serial streams?

A: Yes, it matters not what execution policy is used; the final compressed
stream produced by zfp_compress() depends only on the uncompressed
data and compression settings.

To support future parallel decompression, in particular variable-rate
streams, it will be necessary to also store an index of where (at what
bit offset) each compressed block is stored in the stream.  Extensions to the
current zfp format are being considered to support parallel decompression.

Regardless, the execution policy and parameters such as number of threads
do not need to be the same for compression and decompression.



Q24: Are zfp’s compressed arrays and other data structures thread-safe?

A: Yes, compressed arrays can be made thread-safe; no, data structures
like zfp_stream and bitstream are not necessarily
thread-safe.  As of zfp 0.5.4, thread-safe read and write access
to compressed arrays is provided through the use of
private views, although these come with
certain restrictions and requirements such as the need for the user to
enforce cache coherence.  Please see the documentation on
views for further details.

As far as C objects, zfp’s parallel OpenMP compressor assigns one
zfp_stream per thread, each of which uses its own private
bitstream.  Users who wish to make parallel calls to zfp’s
low-level functions are advised to consult the source
files ompcompress.c and parallel.c.

Finally, the zfp API is thread-safe as long as multiple threads do not
simultaneously call API functions and pass the same zfp_stream
or bitstream object.



Q25: Why does parallel compression performance not match my expectations?

A: zfp partitions arrays into chunks and assigns each chunk to an OpenMP
thread.  A chunk is a sequence of consecutive d-dimensional blocks, each
composed of 4d values.  If there are fewer chunks than threads, then
full processor utilization will not be achieved.

The number of chunks is by default set to the number of threads, but can
be modified by the user via zfp_stream_set_omp_chunk_size().
One reason for using more chunks than threads is to provide for better
load balance.  If compression ratios vary significantly across the array,
then threads that process easy-to-compress blocks may finish well ahead
of threads in charge of difficult-to-compress blocks.  By breaking chunks
into smaller units, OpenMP is given the opportunity to balance the load
better (though the effect of using smaller chunks depends on OpenMP
thread scheduling).  If chunks are too small, however, then the overhead
of allocating and initializing chunks and assigning threads to them may
dominate.  Experimentation with chunk size may improve performance, though
chunks ought to be at least several hundred blocks each.

In variable-rate mode, compressed chunk sizes are not known ahead of time.
Therefore the compressed chunks must be concatenated into a single stream
following compression.  This task is performed sequentially on a single
thread, and will inevitably limit parallel efficiency.

Other reasons for poor parallel performance include compressing arrays
that are too small to offset the overhead of thread creation and
synchronization.  Arrays should ideally consist of thousands of blocks
to offset the overhead of setting up parallel compression.



Q26: Why are compressed arrays so slow?

A: This is likely due to the use of a very small cache.  Prior to zfp
0.5.5, all arrays used two ‘layers’ of blocks as default cache
size, which is reasonable for 2D and higher-dimensional arrays (as long
as they are not too ‘skinny’).  In 1D, however, this implies that the
cache holds only two blocks, which is likely to cause excessive thrashing.

As of version 0.5.5, the default cache size is roughly proportional
to the square root of the total number of array elements, regardless of
array dimensionality.  While this tends to reduce thrashing, we suggest
experimenting with larger cache sizes of at least a few kilobytes to ensure
acceptable performance.

Note that compressed arrays constructed with the
default constructor will
have an initial cache size of only one block.  Therefore, users should call
array::set_cache_size() after resizing
such arrays to ensure a large enough cache.

Depending on factors such as rate, cache size, array access pattern,
array access primitive (e.g., indices vs. iterators), and arithmetic
intensity, we usually observe an application slow-down of 1-10x when
switching from uncompressed to compressed arrays.



Q27: Do compressed arrays use reference counting?

A: It is possible to reference compressed  array elements via proxy
references and pointers, through
iterators, and through views.  Such
indirect references are valid only during the lifetime of the underlying
array.  No reference counting and garbage collection is used to keep the
array alive if there are external references to it.  Such references
become invalid once the array is destructed, and dereferencing them will
likely lead to segmentation faults.
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Troubleshooting

This section is intended for troubleshooting problems with zfp, in case
any arise, and primarily focuses on how to correctly make use of zfp.  If
the decompressed data looks nothing like the original data, or if the
compression ratios obtained seem not so impressive, then it is very likely
that array dimensions or compression parameters have not been set correctly,
in which case this troubleshooting guide could help.

The problems addressed in this section include:



	Is the data dimensionality correct?


	Do the compressor and decompressor agree on the dimensionality?


	Have the “smooth” dimensions been identified?


	Are the array dimensions correct?


	Are the array dimensions large enough?


	Is the data logically structured?


	Is the data set embedded in a regular grid?


	Is the data provided to the zfp executable a raw binary array?


	Is the byte order correct?


	Is the floating-point precision correct?


	Is the integer precision correct?


	Is the data provided to the zfp executable a raw binary array?


	Has the appropriate compression mode been set?









P1: Is the data dimensionality correct?

This is one of the most common problems.  First, make sure that zfp is given
the correct dimensionality of the data.  For instance, an audio stream is a
1D array, an image is a 2D array, and a volume grid is a 3D array, and a
time-varying volume is a 4D array.  Sometimes a data set is a discrete
collection of lower-dimensional objects.  For instance, a stack of unrelated
images (of the same size) could be represented in C as a 3D array:

imstack[count][ny][nx]





but since in this case the images are unrelated, no correlation would be
expected along the third dimension—the underlying dimensionality of the data
is here two.  In this case, the images could be compressed one at a time, or
they could be compressed together by treating the array dimensions as:

imstack[count * ny][nx]





Note that zfp partitions d-dimensional arrays into blocks of 4d
values.  If ny above is not a multiple of four, then some blocks of 4 × 4
pixels will contain pixels from different images, which could hurt compression
and/or quality.  Still, this way of creating a single image by stacking multiple
images is far preferable over linearizing each image into a 1D signal, and
then compressing the images as:

imstack[count][ny * nx]





This loses the correlation along the y dimension and further introduces
discontinuities unless nx is a multiple of four.

Similarly to the example above, a 2D vector field

vfield[ny][nx][2]





could be declared as a 3D array, but the x- and y-components of the
2D vectors are likely entirely unrelated.  In this case, each component
needs to be compressed independently, either by rearranging the data
as two scalar fields:

vfield[2][ny][nx]





or by using strides (see also FAQ #1).  Note that in all
these cases zfp will still compress the data, but if the dimensionality is
not correct then the compression ratio will suffer.



P2: Do the compressor and decompressor agree on the dimensionality?

Consider compressing a 3D array:

double a[1][1][100]





with nx = 100, ny = 1, nz = 1, then decompressing the result to a 1D
array:

double b[100]





with nx = 100.  Although the arrays a and b occupy the same amount of
memory and are in C laid out similarly, these arrays are not equivalent to
zfp because their dimensionalities differ.  zfp uses different CODECs
to (de)compress 1D, 2D, 3D, and 4D arrays, and the 1D decompressor expects a
compressed bit stream that corresponds to a 1D array.

What happens in practice in this case is that the array a is compressed
using zfp’s 3D CODEC, which first pads the array to

double padded[4][4][100]





When this array is correctly decompressed using the 3D CODEC, the padded
values are generated but discarded.  zfp’s 1D decompressor, on the other
hand, expects 100 values, not 100 × 4 × 4 = 1600 values, and
therefore likely returns garbage.



P3: Have the “smooth” dimensions been identified?

Closely related to P1 above, some fields simply do
not vary smoothly along all dimensions, and zfp can do a good job
compressing only those dimensions that exhibit some coherence.  For instance,
consider a table of stock prices indexed by date and stock:

price[stocks][dates]





One could be tempted to compress this as a 2D array, but there is likely
little to no correlation in prices between different stocks.  Each such
time series should be compressed independently as a 1D signal.

What about time-varying images like a video sequence?  In this case, it is
likely that there is correlation over time, and that the value of a single
pixel varies smoothly in time.  It is also likely that each image exhibits
smoothness along its two spatial dimensions.  So this can be treated as a
single, 3D data set.

How about time-varying volumes, such as

field[nt][nz][ny][nx]





As of version 0.5.4, zfp supports compression of 4D arrays.  Since
all dimensions in this example are likely to be correlated, the 4D array
can be compressed directly.  Alternatively, the data could be organized by
the three “smoothest” dimensions and compressed as a 3D array.  Given the
organization above, the array could be treated as 3D:

field[nt * nz][ny][nx]





Again, do not compress this as a 3D array with the innermost
dimensions unfolded:

field[nt][nz][ny * nx]







P4: Are the array dimensions correct?

This is another common problem that seems obvious, but often the dimensions
are accidentally transposed.  Assuming that the smooth dimensions have been
identified, it is important that the dimensions are listed in the correct
order.  For instance, if the data (in C notation) is organized as:

field[d1][d2][d3]





then the data is organized in memory (or on disk) with the d3 dimension varying
fastest, and hence nx = d3, ny = d2, nz = d1 using the zfp naming
conventions for the dimensions, e.g., the zfp executable should
be invoked with:

zfp -3 d3 d2 d1





in this case.  Things will go horribly wrong if zfp in this case is called
with nx = d1, ny = d2, nz = d3.  The entire data set will still
compress and decompress, but compression ratio and quality will likely suffer
greatly.



P5: Are the array dimensions large enough?

zfp partitions d-dimensional data sets into blocks of 4d values, e.g.,
in 3D a block consists of 4 × 4 × 4 values.  If the dimensions are not
multiples of four, then zfp will “pad” the array to the next larger multiple
of four.  Such padding can hurt compression.  In particular, if one or more of
the array dimensions are small, then the overhead of such padding could be
significant.

Consider compressing a collection of 1000 small 3D arrays:

field[1000][5][14][2]





zfp would first logically pad this to a larger array:

field[1000][8][16][4]





which is (8 × 16 × 4) / (5 × 14 × 2) ~ 3.66 times
larger.  Although such padding often compresses well, this still represents
a significant overhead.

If a large array has been partitioned into smaller pieces, it may be best to
reassemble the larger array.  Or, when possible, ensure that the sub-arrays
have dimensions that are multiples of four.



P6: Is the data logically structured?

zfp was designed for logically structured data, i.e., Cartesian grids.  It
works much like an image compressor does, which assumes that the data set is a
structured array of pixels, and it assumes that values vary reasonably smoothly
on average, just like natural images tend to contain large regions of uniform
color or smooth color gradients, like a blue sky, smoothly varying skin tones
of a human’s face, etc.  Many data sets are not represented on a regular grid.
For instance, an array of particle xyz positions:

points[count][3]





is a 2D array, but does not vary smoothly in either dimension.  Furthermore,
such unstructured data sets need not be organized in any particular order;
the particles could be listed in any arbitrary order.  One could attempt to
sort the particles, for example by the x coordinate, to promote smoothness,
but this would still leave the other two dimensions non-smooth.

Sometimes the underlying dimensions are not even known, and only the total
number of floating-point values is known.  For example, suppose we only knew
that the data set contained n = count × 3 values.  One might be
tempted to compress this using zfp’s 1-dimensional compressor, but once
again this would not work well.  Such abuse of zfp is much akin to trying
to compress an image using an audio compressor like mp3, or like compressing
an n-sample piece of music as an n-by-one sized image using an image
compressor like JPEG.  The results would likely not be very good.

Some data sets are logically structured but geometrically irregular.  Examples
include fields stored on Lagrangian meshes that have been warped, or on
spectral element grids, which use a non-uniform grid spacing.  zfp assumes
that the data has been regularly sampled in each dimension, and the more the
geometry of the sampling deviates from uniform, the worse compression gets.
Note that rectilinear grids with different but uniform grid spacing in each
dimension are fine.  If your application uses very non-uniform sampling, then
resampling onto a uniform grid (if possible) may be advisable.

Other data sets are “block structured” and consist of piecewise structured
grids that are “glued” together.  Rather than treating such data as
unstructured 1D streams, consider partitioning the data set into independent
(possibly overlapping) regular grids.



P7: Is the data set embedded in a regular grid?

Some applications represent irregular geometry on a Cartesian grid, and leave
portions of the domain unspecified.  Consider, for instance, sampling the
density of the Earth onto a Cartesian grid.  Here the density for grid points
outside the Earth is unspecified.

In this case, zfp does best by initializing the “background field” to all
zeros.  In zfp’s fixed-accuracy mode, any
“empty” block that consists of all zeros is represented using a single bit,
and therefore the overhead of representing empty space can be kept low.



P8: Have fill values, NaNs, and infinities been removed?

It is common to signal unspecified values using what is commonly called a
“fill value,” which is a special constant value that tends to be far out of
range of normal values.  For instance, in climate modeling the ocean
temperature over land is meaningless, and it is common to use a very large
temperature value such as 1e30 to signal that the temperature is undefined
for such grid points.

Very large fill values do not play well with zfp, because they both introduce
artificial discontinuities and pollute nearby values by expressing them all
with respect to the common largest exponent within their block.  Assuming
a fill value of 1e30, the value pi in the same block would be represented as:

0.00000000000000000000000000000314159... * 1e30





Given finite precision, the small fraction would likely be replaced with zero,
resulting in complete loss of the actual value being stored.

Other applications use NaNs (special not-a-number values) or infinities as
fill values.  These are even more problematic, because they do not have a
defined exponent.  zfp relies on the C function frexp() to compute
the exponent of the largest (in magnitude) value within a block, but produces
unspecified behavior if that value is not finite.

zfp currently has no independent mechanism for handling fill values.  Ideally
such special values would be signalled separately, e.g., using a bit mask,
and then replaced with zeros to ensure that they both compress well and do
not pollute actual data.



P9: Is the byte order correct?

zfp generally works with the native byte order (e.g., little or big endian)
of the machine it is compiled on.  One needs only be concerned with byte order
when reading raw, binary data into the zfp executable, when exchanging
compressed files across platforms, and when varying the bit stream word size
on big endian machines (not common).  For instance, to compress a binary
double-precision floating-point file stored in big endian byte order on a
little endian machine, byte swapping must first be done.  For example, on
Linux and macOS, 8-byte doubles can be byte swapped using:

objcopy -I binary -O binary --reverse-bytes=8 big.bin little.bin





See also FAQ #11 for more discussion of byte order.



P10: Is the floating-point precision correct?

Another obvious problem: Please make sure that zfp is told whether the data
to compress is an array of single- (32-bit) or double-precision (64-bit)
values, e.g., by specifying the -f or -d options to the
zfp executable or by passing the appropriate zfp_type
to the C functions.



P11: Is the integer precision correct?

zfp currently supports compression of 31- or 63-bit signed integers.  Shorter
integers (e.g., bytes, shorts) can be compressed but must first be promoted
to one of the longer types.  This should always be done using zfp’s functions
for promotion and demotion, which both perform bit
shifting and biasing to handle both signed and unsigned types.  It is not
sufficient to simply cast short integers to longer integers.  See also FAQs
#8 and #9.



P12: Is the data provided to the zfp executable a raw binary array?

zfp expects that the input file is a raw binary array of integers or
floating-point values in the IEEE format, e.g., written to file using
fwrite().  Do not hand zfp a text file containing ASCII
floating-point numbers.  Strip the file of any header information.
Languages like Fortran tend to store with the array its size.  No such
metadata may be embedded in the file.



P13: Has the appropriate compression mode been set?

zfp provides three different lossy
modes of compression that trade storage and accuracy,
plus one lossless mode.  In
fixed-rate mode, the user specifies the exact number of bits (often in
increments of a fraction of a bit) of compressed storage per value (but see
FAQ #18 for caveats).  From the user’s perspective, this
seems a very desirable feature, since it provides for a direct mechanism for
specifying how much storage to use.  However, there is often a large quality
penalty associated with the fixed-rate mode, because each block of 4d
values is allocated the same number of bits.  In practice, the information
content over the data set varies significantly, which means that
easy-to-compress regions are assigned too many bits, while too few bits are
available to faithfully represent the more challenging-to-compress regions.
Although one of the unique features of zfp, its fixed-rate mode should
primarily be used only when random access to the data is needed.

zfp also provides a fixed-precision mode, where the user specifies how many
uncompressed significant bits to use to represent the floating-point fraction.
This precision may not be exactly what people might normally think of.  For
instance, the C float type is commonly referred to as 32-bit precision.
However, the sign bit and exponent account for nine of those bits and do
not contribute to the number of significant bits of precision.  Furthermore,
for normal numbers, IEEE uses a hidden implicit one bit, so most float values
actually have 24 bits of precision.  Furthermore, zfp uses a
block-floating-point representation with a single exponent per block,
which may cause some small values to have several leading zero bits and
therefore less precision than requested.  Thus, the effective precision
returned by zfp in its fixed-precision mode may in fact vary.  In practice,
the precision requested is only an upper bound, though typically at least one
value within a block has the requested precision.

zfp supports a fixed-accuracy mode, which except in rare
circumstances (see FAQ #17) ensures that the absolute
error is bounded, i.e., the difference between any decompressed and original
value is at most the tolerance specified by the user (but usually several
times smaller).  Whenever possible, we recommend using this compression mode,
which depending on how easy the data is to compress results in the smallest
compressed stream that respects the error tolerance.

As of zfp 0.5.5, reversible (lossless) compression is available.
The amount of lossless reduction of floating-point data is usually quite
limited, however, especially for double-precision data.  Unless a bit-for-bit
exact reconstruction is needed, we strongly advocate the use of lossy
compression.

Finally, there is also an expert mode that allows the user to combine the
constraints of fixed rate, precision, and accuracy.  See the section on
compression modes for more details.
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Limitations

zfp has evolved from a research prototype to a library that is approaching
production readiness.  However, the API and even the compression codec are
still undergoing changes as new important features are added.

Below is a list of known limitations of the current version of zfp.
See the section on Future Directions for a discussion of planned features
that will address some of these limitations.


	Special floating-point values like infinity and NaN are supported in
reversible mode but not in zfp’s lossy compression modes.  Subnormal
floating-point numbers are, however, correctly handled.  There is an
implicit assumption that floating point conforms to IEEE-754, though
extensions to other floating-point formats should be possible with
minor effort.


	The optional zfp header supports arrays with at
most 248 elements.  The zfp header limits each dimension
to 248/d elements in a d-dimensional array, i.e.,
248, 224, 216, and 212 for 1D through
4D arrays, respectively.  Note that this limitation applies only to
the header; array dimensions are otherwise limited only by the size
of an unsigned integer.


	Conventional pointers and references to individual array elements are
not available.  That is, constructions like double* ptr = &a[i];
are not possible when a is a zfp array.  However, as of
zfp 0.5.2, proxy pointers are available that act much
like pointers to uncompressed data.  Similarly, operators []
and () do not return regular C++ references.  Instead, a
proxy reference class is used (similar to how STL bit
vectors are implemented).  These proxy references and pointers can,
however, safely be passed to functions and used where regular references
and pointers can.


	Although the current version of zfp supports iterators,
pointers, and references to array
elements, ‘const’ versions of these accessors are not yet available for
read-only access.


	zfp can potentially provide higher precision than conventional float
and double arrays, but the interface currently does not expose this.
For example, such added precision could be useful in finite difference
computations, where catastrophic cancellation can be an issue when
insufficient precision is available.


	Only single and double precision types are supported.  Generalizations
to IEEE half and quad precision would be useful.  For instance,
compressed 64-bit-per-value storage of 128-bit quad-precision numbers
could greatly improve the accuracy of double-precision floating-point
computations using the same amount of storage.


	Complex-valued arrays are not directly supported.  Real and imaginary
components must be stored as separate arrays, which may result in lost
opportunities for compression, e.g., if the complex magnitude is constant
and only the phase varies.


	Version 0.5.3 adds support for OpenMP compression.  However,
OpenMP decompression is not yet supported.


	Version 0.5.4 adds support for CUDA compression and decompression.
However, only the fixed-rate compression mode is so far supported.


	As of version 0.5.4, zfp supports compression and decompression
of 4D arrays.  However, zfp does not yet implement a 4D compressed
array C++ class.  This will be added in the near future.


	The C wrappers for zfp’s compressed arrays support only
basic array accesses.  There is currently no C interface for proxy
references, pointers, iterators, or views.


	The Python and Fortran bindings do not yet support compressed arrays.
Moreover, only a select subset of the high-level API
is available via Python.
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Future Directions

zfp is actively being developed and plans have been made to add a number of
important features, including:


	Tagging of missing values.  zfp currently assumes that arrays are
dense, i.e., each array element stores a valid numerical value.  In many
science applications this is not the case.  For instance, in climate
modeling, ocean temperature is not defined over land.  In other
applications, the domain is not rectangular but irregular and embedded in a
rectangular array.  Such examples of sparse arrays demand a mechanism to tag
values as missing or indeterminate.  Current solutions often rely on tagging
missing values as NaNs or special, often very large sentinel values outside
the normal range, which can lead to poor compression and complete loss of
accuracy in nearby valid values.  See FAQ #7.


	Support for NaNs and infinities.  Similar to missing values, some
applications store special IEEE floating-point values that are supported
by zfp only in reversible mode.
In fact, for all lossy compression modes, the presence of such values will
currently result in undefined behavior and loss of data for all values
within a block that contains non-finite values.


	Support for more general data types.  zfp currently does not
directly support half and quad precision floating point.  Nor is there
support for 8- and 16-bit integers.  With the emergence of new number
representations like posits and bfloat16, we envision the need for
a more general interface and a single unified zfp representation that
would allow for conversion between zfp and any number representation.
We are working on developing an uncompressed interchange format that acts
like an intermediary between zfp and other number formats.  This format
decouples the zfp compression pipeline from the external number type and
allows new number formats to be supported via user-defined conversion
functions to and from the common interchange format.


	Progressive decompression.  Streaming large data sets from remote
storage for visualization can be time consuming, even when the data is
compressed.  Progressive streaming allows the data to be reconstructed
at reduced precision over the entire domain, with quality increasing
progressively as more data arrives.  The low-level bit stream interface
already supports progressive access by interleaving bits across blocks
(see FAQ #13), but zfp lacks a high-level API
for generating and accessing progressive streams.


	Parallel compression.  zfp’s data partitioning into blocks invites
opportunities for data parallelism on multithreaded platforms by dividing
the blocks among threads.  An OpenMP implementation of parallel
compression is available that produces compressed streams that
are identical to serially compressed streams.  However, parallel
decompression is not yet supported.  zfp also supports compression and
decompression on the GPU via CUDA.  However, only fixed-rate mode is
so far supported.


	Variable-rate arrays.  zfp currently supports only fixed-rate
compressed arrays, which wastes bits in smooth regions with little
information content while too few bits may be allocated to accurately
preserve sharp features such as shocks and material interfaces, which
tend to drive the physics in numerical simulations.  Two candidate
solutions have been identified for read-only and read-write access
to variable-rate arrays with very modest storage overhead.  These
arrays will support both fixed precision and accuracy.


	Array operations.  zfp’s compressed arrays currently support basic
indexing and initialization, but lack array-wise operations such as
arithmetic, reductions, etc.  Some such operations can exploit the
higher precision (than IEEE-754) supported by zfp, as well as accelerated
blockwise computations that need not fully decompress and convert the
zfp representation to IEEE-754.


	Language bindings.  The main compression codec is written in C89 to
facilitate calls from other languages.  zfp’s compressed arrays, on
the other hand, are written in C++.  zfp 0.5.4 and 0.5.5
add C wrappers around compressed arrays and Fortran and Python bindings to
the high-level C API.  Work is planned to provide additional language
bindings for C, C++, Fortran, and Python to expose the majority of zfp’s
capabilities through all of these programming languages.




Please contact Peter Lindstrom with requests for
features not listed above.
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Release Notes

zfp 0.5.5, May 5, 2019



	Added support for reversible (lossless) compression of floating-point and
integer data.


	Added methods for serializing and deserializing zfp’s compressed arrays.


	Added Python bindings for compressing NumPy arrays.


	Added Fortran bindings to zfp’s high-level C API.


	Change:


	The default compressed-array cache size is now a function of the total
number of array elements, irrespective of array shape.






	Bug fixes:


	Incorrect handling of execution policy in zfp utility.


	Incorrect handling of decompression via header in zfp utility.


	Incorrect cleanup of device memory in CUDA decompress.


	Tests for failing mallocs.


	CMake installation of CFP when built.


	zfp_write_header and zfp_field_metadata now fail if array dimensions
are too large to fit in header.











zfp 0.5.4, October 1, 2018



	Added support for CUDA fixed-rate compression and decompression.


	Added views into compressed arrays for thread safety, nested array
indexing, slicing, and array subsetting.


	Added C language bindings for compressed arrays.


	Added support for compressing and decompressing 4D data.


	Changes:


	Execution policy now applies to both compression and decompression.


	Compressed array accessors now return Scalar type instead of
const Scalar& to avoid stale references to evicted cache lines.






	Bug fixes:


	Handling of negative strides.


	Command line tool handling of arrays with more than 232 elements.


	bitstream C++ compatibility.


	Respect minimum cache size request.











zfp 0.5.3, March 28, 2018



	Added support for OpenMP multithreaded compression (but not decompression).


	Added options for OpenMP execution to zfp command-line tool.


	Changed return value of zfp_decompress to indicate the number of compressed
bytes processed so far (now returns same value as zfp_compress on success).


	Added compressed array support for copy construction and assignment via
deep copies.


	Added virtual destructors to enable inheritance from zfp arrays.







zfp 0.5.2, September 28, 2017



	Added iterators and proxy objects for pointers and references.


	Added example illustrating how to use iterators and pointers.


	Modified diffusion example to optionally use iterators.


	Moved internal headers under array to array/zfp.


	Modified 64-bit integer typedefs to avoid the C89 non-compliant long long
and allow for user-supplied types and literal suffixes.


	Renamed compile-time macros that did not have a ZFP prefix.


	Fixed issue with setting stream word type via CMake.


	Rewrote documentation in reStructuredText and added complete
documentation of all public functions, classes, types, and macros.
Removed ASCII documentation.







zfp 0.5.1, March 28, 2017



	This release primarily fixes a few minor issues but also includes
changes in anticipation of a large number of planned future additions
to the library.  No changes have been made to the compressed format,
which is backwards compatible with version 0.5.0.


	Added high-level API support for integer types.


	Separated library version from CODEC version and added version string.


	Added example that illustrates in-place compression.


	Added support for CMake builds.


	Corrected inconsistent naming of BIT_STREAM macros in code and
documentation.


	Renamed some of the header bit mask macros.


	Added return values to stream_skip and stream_flush to indicate the
number of bits skipped or output.


	Renamed stream_block and stream_delta to make it clear that they refer
to strided streams.  Added missing definition of stream_stride_block.


	Changed int/uint types in places to use ptrdiff_t/size_t where
appropriate.


	Changed API for zfp_set_precision and zfp_set_accuracy to not require
the scalar type.


	Added missing static keyword in decode_block.


	Changed testzfp to allow specifying which tests to perform on the
command line.


	Fixed bug that prevented defining uninitialized arrays.


	Fixed incorrect computation of array sizes in zfp_field_size.


	Fixed minor issues that prevented code from compiling on Windows.


	Fixed issue with fixed-accuracy headers that caused unnecessary storage.


	Modified directory structure.


	Added documentation that discusses common issues with using zfp.







zfp 0.5.0, February 29, 2016



	Modified CODEC to more efficiently encode blocks whose values are all
zero or are smaller in magnitude than the absolute error tolerance.
This allows representing “empty” blocks using only one bit each.  This
version is not backwards compatible with prior zfp versions.


	Changed behavior of zfp_compress and zfp_decompress to not automatically
rewind the bit stream.  This makes it easier to concatenate multiple
compressed bit streams, e.g., when compressing vector fields or multiple
scalars together.


	Added functions for compactly encoding the compression parameters
and field meta data, e.g., for producing self-contained compressed
streams.  Also added functions for reading and writing a header
containing these parameters.


	Changed the zfp example program interface to allow reading and writing
compressed streams, optionally with a header.  The zfp tool can now be
used to compress and decompress files as a stand alone utility.







zfp 0.4.1, December 28, 2015



	Fixed bug that caused segmentation fault when compressing 3D arrays
whose dimensions are not multiples of four.  Specifically, arrays of
dimensions nx * ny * nz, with ny not a multiple of four, were not
handled correctly.


	Modified examples/fields.h to ensure standard compliance.  Previously,
C99 support was needed to handle the hex float constants, which are
not supported in C++98.


	Added simple.c as a minimal example of how to call the compressor.


	Changed compilation of diffusion example to output two executables:
one with and one without compression.







zfp 0.4.0, December 5, 2015



	Substantial changes to the compression algorithm that improve PSNR
by about 6 dB and speed by a factor of 2-3.  These changes are not
backward compatible with previous versions of zfp.


	Added support for 31-bit and 63-bit integer data, as well as shorter
integer types.


	Rewrote compression codec entirely in C to make linking and calling
easier from other programming languages, and to expose the low-level
interface through C instead of C++.  This necessitated significant
changes to the API as well.


	Minor changes to the C++ compressed array API, as well as major
implementation changes to support the C library.  The namespace and
public types are now all in lower case.


	Deprecated support for general fixed-point decorrelating transforms
and slimmed down implementation.


	Added new examples for evaluating the throughput of the (de)compressor
and for compressing grayscale images in the pgm format.


	Added FAQ.







zfp 0.3.2, December 3, 2015



	Fixed bug in Array::get() that caused the wrong cached block to be
looked up, thus occasionally copying incorrect values back to parts
of the array.







zfp 0.3.1, May 6, 2015



	Fixed rare bug caused by exponent underflow in blocks with no normal
and some subnormal numbers.







zfp 0.3.0, March 3, 2015



	Modified the default decorrelating transform to one that uses only
additions and bit shifts.  This new transform, in addition to being
faster, also has some theoretical optimality properties and tends to
improve rate distortion.


	Added compile-time support for parameterized transforms, e.g., to
support other popular transforms like DCT, HCT, and Walsh-Hadamard.


	Made forward transform range preserving: (-1, 1) is mapped to (-1, 1).
Consequently Q1.62 fixed point can be used throughout.


	Changed the order in which bits are emitted within each bit plane
to be more intelligent.  Group tests are now deferred until they
are needed, i.e., just before the value bits for the group being
tested.  This improves the quality of fixed-rate encodings, but
has no impact on compressed size.


	Made several optimizations to improve performance.


	Added floating-point traits to reduce the number of template
parameters.  It is now possible to declare a 3D array as
Array3<float>, for example.


	Added functions for setting the array scalar type and dimensions.


	Consolidated several header files.


	Added testzfp for regression testing.







zfp 0.2.1, December 12, 2014



	Added Win64 support via Microsoft Visual Studio compiler.


	Fixed broken support for IBM’s xlc compiler.


	Made several minor changes to suppress compiler warnings.


	Documented expected output for the diffusion example.







zfp 0.2.0, December 2, 2014



	The compression interface from zfpcompress was relocated to a
separate library, called libzfp, and modified to be callable from C.
This API now uses a parameter object (zfp_params) to specify array
type and dimensions as well as compression parameters.


	Several utility functions were added to simplify libzfp usage:


	Functions for setting the rate, precision, and accuracy.
Corresponding functions were also added to the Codec class.


	A function for estimating the buffer size needed for compression.






	The Array class functionality was expanded:


	Support for accessing the compressed bit stream stored with an
array, e.g., for offline compressed storage and for initializing
an already compressed array.


	Functions for dynamically specifying the cache size.


	The default cache is now direct-mapped instead of two-way
associative.






	Minor bug fixes:


	Corrected the value of the lowest possible bit plane to account for
both the smallest exponent and the number of bits in the significand.


	Corrected inconsistent use of rate and precision.  The rate refers
to the number of compressed bits per floating-point value, while
the precision refers to the number of uncompressed bits.  The Array
API was changed accordingly.











zfp 0.1.0, November 12, 2014



	Initial beta release.
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