

zfp 1.0.0 documentation

Contents

	Introduction
	Availability

	Application Support

	Usage

	Technology

	Resources

	License
	Notice

	Installation
	CMake Builds

	GNU Builds

	Testing

	Build Targets

	Configuration

	Dependencies

	Algorithm
	Lossy Compression

	Lossless Compression

	Compression Modes
	Expert Mode

	Fixed-Rate Mode

	Fixed-Precision Mode

	Fixed-Accuracy Mode

	Reversible Mode

	Parallel Execution
	Execution Policies

	Execution Parameters

	Fixed- vs. Variable-Rate Compression

	Using OpenMP

	Using CUDA

	Setting the Execution Policy

	Parallel Compression

	Parallel Decompression

	High-Level C API
	Macros

	Types

	Constants

	Functions

	Low-Level C API
	Stream Manipulation

	Encoder

	Decoder

	Utility Functions

	C++ Wrappers

	Bit Stream API
	Strided Streams

	Macros

	Types

	Constants

	Functions

	Python Bindings
	Compression

	Decompression

	Fortran Bindings
	Types

	Constants

	Functions and Subroutines

	Compressed-Array C++ Classes
	Read-Write Fixed-Rate Arrays

	Read-Only Variable-Rate Arrays

	Caching

	Serialization

	References

	Pointers

	Iterators

	Views

	Codec

	Index

	Compressed-Array C Bindings
	Arrays

	Serialization

	Array Accessors

	References

	Pointers

	Iterators

	Tutorial
	High-Level C Interface

	Low-Level C Interface

	Compressed C++ Arrays

	File Compressor
	Usage

	Code Examples
	Simple Compressor

	Compressed-Array C++ Classes

	Diffusion Solver

	Speed Benchmark

	PGM Image Compression

	PPM Image Compression

	In-place Compression

	Iterators

	Regression Tests

	FAQ

	Troubleshooting

	Limitations

	Future Directions

	Contributors

	Release Notes
	1.0.0 (2022-08-01)

	0.5.5 (2019-05-05)

	0.5.4 (2018-10-01)

	0.5.3 (2018-03-28)

	0.5.2 (2017-09-28)

	0.5.1 (2017-03-28)

	0.5.0 (2016-02-29)

	0.4.1 (2015-12-28)

	0.4.0 (2015-12-05)

	0.3.2 (2015-12-03)

	0.3.1 (2015-05-06)

	0.3.0 (2015-03-03)

	0.2.1 (2014-12-12)

	0.2.0 (2014-12-02)

	0.1.0 (2014-11-12)

Introduction

zfp is an open-source library for representing multidimensional numerical
arrays in compressed form to reduce storage and bandwidth requirements.
zfp consists of four main components:

	An efficient number format for representing small, fixed-size blocks
of real values. The zfp format usually provides higher accuracy per bit
stored than conventional number formats like IEEE 754 floating point.

	A set of classes that implement storage and manipulation
of a multidimensional array data type. zfp arrays support high-speed
read and write random access to individual array elements and are a
drop-in replacement for std::vector and native C/C++ arrays.
zfp arrays provide accessors like proxy pointers,
iterators, and views. zfp arrays
allow specifying an exact memory footprint or an error tolerance.

	A C library for streaming compression of partial or
whole arrays of integers or floating-point numbers, e.g., for applications
that read and write large data sets to and from disk. This library
supports fast, parallel (de)compression via OpenMP and CUDA.

	A command-line executable for compressing binary files
of integer or floating-point arrays, e.g., as a substitute for
general-purpose compressors like gzip.

As a compressor, zfp is primarily lossy, meaning that the numerical
values are usually only approximately represented, though the user may
specify error tolerances to limit the amount of loss. Fully
lossless compression, where values are represented
exactly, is also supported.

zfp is primarily written in C and C++ but also includes
Python and Fortran bindings.
zfp is being developed at
Lawrence Livermore National Laboratory [https://www.llnl.gov]
and is supported by the U.S. Department of Energy’s
Exascale Computing Project [https://www.exascaleproject.org].

Availability

zfp is freely available as open source on
GitHub [https://github.com/LLNL/zfp] and is distributed under the terms
of a permissive three-clause BSD license. zfp may be
installed using CMake or GNU Make. Installation from
source code is recommended for users who wish to configure the internals of
zfp and select which components (e.g., programming models, language
bindings) to install.

zfp is also available through several package managers, including
Conda (both C/C++ [https://anaconda.org/conda-forge/zfp] and
Python [https://anaconda.org/conda-forge/zfpy] packages are available),
PIP [https://pypi.org/project/zfpy], and
Spack [https://spack.readthedocs.io/en/latest/package_list.html#zfp].
RPM packages [https://repology.org/project/zfp/versions] are available
for several Linux distributions and may be installed using apt or
yum.

Application Support

zfp has been incorporated into several independently developed applications,
plugins, and formats, such as

	Compressed file I/O [https://adios2.readthedocs.io/en/latest/operators/CompressorZFP.html]
in ADIOS [https://www.olcf.ornl.gov/center-projects/adios/].

	Compression codec [https://www.blosc.org/posts/support-lossy-zfp/]
in the BLOSC [https://www.blosc.org] meta compressor.

	H5Z-ZFP [https://github.com/LLNL/H5Z-ZFP] plugin for
HDF5 [https://www.hdfgroup.org/solutions/hdf5/]®. zfp is also one of the
select compressors shipped with
HDF5 binaries [https://www.hdfgroup.org/downloads/hdf5/].

	Compression functions [https://software.intel.com/en-us/ipp-dev-reference-zfp-compression-functions]
for Intel® Integrated Performance Primitives [https://software.intel.com/en-us/intel-ipp].

	Compressed MPI messages [https://doi.org/10.1109/IPDPS49936.2021.00053]
in MVAPICH2-GDR [https://mvapich.cse.ohio-state.edu/userguide/gdr/].

	Compressed file I/O [https://www.openinventor.com/en/features/oil-gas-geoscience/zfp-compression/]
in OpenInventor [https://www.openinventor.com]™.

	Compression codec [https://community.opengroup.org/osdu/platform/domain-data-mgmt-services/seismic/open-zgy/-/raw/master/doc/compress.html]
underlying the
OpenZGY [https://community.opengroup.org/osdu/platform/domain-data-mgmt-services/seismic/open-zgy]
format.

	Compressed file I/O [https://topology-tool-kit.github.io/doc/html/TopologicalCompression_8cpp_source.html]
in TTK [https://topology-tool-kit.github.io].

	Third-party module [https://gitlab.kitware.com/vtk/vtk/tree/master/ThirdParty/zfp]
in VTK [https://vtk.org].

	Compression worklet [http://m.vtk.org/documentation/namespacevtkm_1_1worklet_1_1zfp.html]
in VTK-m [http://m.vtk.org].

	Compression codec [https://numcodecs.readthedocs.io/en/stable/zfpy.html] in Zarr [https://github.com/zarr-developers/zarr-python] via numcodecs [https://github.com/zarr-developers/numcodecs].

See
this list [https://computing.llnl.gov/projects/floating-point-compression/related-projects]
for other software products that support zfp.

Usage

The typical user will interact with zfp via one or more of its components,
specifically

	Via the C API when doing I/O in an application or otherwise
performing data (de)compression online. High-speed, parallel compression is
supported via OpenMP and CUDA.

	Via zfp’s in-memory compressed-array classes when
performing computations on very large arrays that demand random access to
array elements, e.g., in visualization, data analysis, or even in numerical
simulation. These classes can often substitute C/C++ arrays and STL
vectors in applications with minimal code changes.

	Via the zfp command-line tool when compressing
binary files offline.

	Via third-party I/O libraries or tools that support zfp.

Technology

zfp compresses d-dimensional (1D, 2D, 3D, and 4D) arrays of integer or
floating-point values by partitioning the array into cubical blocks of 4d
values, i.e., 4, 16, 64, or 256 values for 1D, 2D, 3D, and 4D arrays,
respectively. Each such block is independently compressed to a fixed-
or variable-length bit string, and these bit strings may be concatenated
into a single stream of bits.

zfp usually truncates each per-block bit string to a fixed number of bits
to meet a storage budget or to some variable length needed to meet a given
error tolerance, as dictated by the compressibility of the data.
The bit string representing any given block may be truncated at any point and
still yield a valid approximation. The early bits are most important; later
bits progressively refine the approximation, similar to how the last few bits
in a floating-point number have less significance than the first several bits.
The trailing bits can usually be discarded (zeroed) with limited impact on
accuracy.

zfp was originally designed for floating-point arrays only but has been
extended to also support integer data, and could for instance be used to
compress images and quantized volumetric data. To achieve high compression
ratios, zfp generally uses lossy but optionally error-bounded compression.
Bit-for-bit lossless compression is also possible through one of zfp’s
compression modes.

zfp works best for 2D-4D arrays that exhibit spatial correlation, such as
continuous fields from physics simulations, images, regularly sampled terrain
surfaces, etc. Although zfp also provides support for 1D arrays, e.g.,
for audio signals or even unstructured floating-point streams, the
compression scheme has not been well optimized for this use case, and
compression ratio and quality may not be competitive with floating-point
compressors designed specifically for 1D streams.

In all use cases, it is important to know how to use zfp’s
compression modes as well as what the
limitations of zfp are. Although it is not critical
to understand the
compression algorithm itself, having some familiarity with
its major components may help understand what to expect and how zfp’s
parameters influence the result.

Resources

zfp is based on the algorithm described in the following
paper:

Peter Lindstrom

“Fixed-Rate Compressed Floating-Point Arrays [https://www.researchgate.net/publication/264417607_Fixed-Rate_Compressed_Floating-Point_Arrays]”

IEEE Transactions on Visualization and Computer Graphics

20(12):2674-2683, December 2014

doi:10.1109/TVCG.2014.2346458 [http://doi.org/10.1109/TVCG.2014.2346458]

zfp has evolved since the original publication; the algorithm implemented
in the current version is described in:

James Diffenderfer, Alyson Fox, Jeffrey Hittinger, Geoffrey Sanders, Peter Lindstrom

“Error Analysis of ZFP Compression for Floating-Point Data [https://www.researchgate.net/publication/331162006_Error_Analysis_of_ZFP_Compression_for_Floating-Point_Data]”

SIAM Journal on Scientific Computing

41(3):A1867-A1898, 2019

doi:10.1137/18M1168832 [http://doi.org/10.1137/18M1168832]

For more information on zfp, please see the zfp
website [http://zfp.llnl.gov].
For bug reports, please consult the
GitHub issue tracker [https://github.com/LLNL/zfp/issues].
For questions, comments, and requests, please
contact us.

License

Copyright (c) 2014-2022, Lawrence Livermore National Security, LLC

All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the disclaimer below.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the disclaimer (as noted below) in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the LLNS/LLNL nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL LAWRENCE LIVERMORE NATIONAL SECURITY,
LLC, THE U.S. DEPARTMENT OF ENERGY OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Notice

This work was produced under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344.

This work was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor
Lawrence Livermore National Security, LLC, nor any of their employees
makes any warranty, expressed or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights.

Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government or Lawrence Livermore National Security, LLC.

The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising
or product endorsement purposes.

Installation

zfp consists of four distinct parts: a compression library written in C,
a set of C++ header files that implement compressed arrays and corresponding
C wrappers, optional Python and Fortran bindings, and a set of C and C++
examples and utilities. The main compression codec is written in C and
should conform to both the ISO C89 and C99 standards. The C++ array classes
are implemented entirely in header files and can be included as is, but since
they call the compression library, applications must link with libzfp.

zfp is preferably built using CMake [https://cmake.org], although the
core library can also be built using GNU make on Linux, macOS, and MinGW.

zfp conforms to various language standards, including C89, C99, C++98,
C++11, and C++14.

Note

zfp requires 64-bit compiler and operating system support.

 Algorithm

Algorithm

zfp uses two different algorithms to support lossy
and lossless compression. These algorithms are
described in detail below.

Lossy Compression

The zfp lossy compression scheme is based on the idea of breaking a
d-dimensional array into independent blocks of 4d values each,
e.g., 4 × 4 × 4 values in three dimensions. Each block is
compressed/decompressed entirely independently from all other blocks. In
this sense, zfp is similar to current hardware texture compression schemes
for image coding implemented on graphics cards and mobile devices.

The lossy compression scheme implemented in this version of zfp has evolved
from the method described in the original paper, and can
conceptually be thought of as consisting of eight sequential steps (in
practice some steps are consolidated or exist only for illustrative
purposes):

	The d-dimensional array is partitioned into blocks of dimensions
4d. If the array dimensions are not multiples of four, then
blocks near the boundary are padded to the next multiple of four. This
padding is invisible to the application.

	The independent floating-point values in a block are converted to what
is known as a block-floating-point representation, which uses a single,
common floating-point exponent for all 4d values. The effect of
this conversion is to turn each floating-point value into a 31- or 63-bit
signed integer. If the values in the block are all zero or are smaller
in magnitude than the fixed-accuracy tolerance (see below), then only a
single bit is stored with the block to indicate that it is “empty” and
expands to all zeros. Note that the block-floating-point conversion and
empty-block encoding are not performed if the input data is represented
as integers rather than floating-point numbers.

	The integers are decorrelated using a custom, high-speed, near orthogonal
transform similar to the discrete cosine transform used in JPEG image
coding. The transform exploits separability and is implemented
efficiently in-place using the lifting scheme, requiring only
2.5 d integer additions and 1.5 d bit shifts by one per integer in
d dimensions. If the data is “smooth,” then this transform will turn
most integers into small signed values clustered around zero.

	The signed integer coefficients are reordered in a manner similar to
JPEG zig-zag ordering so that statistically they appear in a roughly
monotonically decreasing order. Coefficients corresponding to low
frequencies tend to have larger magnitude and are listed first. In 3D,
coefficients corresponding to frequencies i, j, k in the three
dimensions are ordered by i + j + k first and then by
i2 + j2 + k2.

	The two’s complement signed integers are converted to their negabinary
(base negative two) representation using one addition and one bit-wise
exclusive or per integer. Because negabinary has no single dedicated
sign bit, these integers are subsequently treated as unsigned. Unlike
sign-magnitude representations, the leftmost one-bit in negabinary
simultaneously encodes the sign and approximate magnitude of a number.
Moreover, unlike two’s complement, numbers small in magnitude have many
leading zeros in negabinary regardless of sign, which facilitates
encoding.

	The bits that represent the list of 4d integers are transposed so
that instead of being ordered by coefficient they are ordered by bit
plane, from most to least significant bit. Viewing each bit plane as
an unsigned integer, with the lowest bit corresponding to the lowest
frequency coefficient, the anticipation is that the first several of
these transposed integers are small, because the coefficients are
assumed to be ordered by magnitude.

	The transform coefficients are compressed losslessly using embedded
coding by exploiting the property that the coefficients tend to have many
leading zeros that need not be encoded explicitly. Each bit plane is
encoded in two parts, from lowest to highest bit. First, the n lowest
bits are emitted verbatim, where n is the smallest number such that
the 4d − n highest bits in all previous bit planes are all
zero. Initially, n = 0. Then, a variable-length representation of the
remaining 4d − n bits, x, is encoded. For such an integer
x, a single bit is emitted to indicate if x = 0, in which case we are
done with the current bit plane. If not, then bits of x are emitted,
starting from the lowest bit, until a one-bit is emitted. This triggers
another test whether this is the highest set bit of x, and the result
of this test is output as a single bit. If not, then the procedure
repeats until all m of x’s value bits have been output, where
2m-1 ≤ x < 2m. This can be thought of as a
run-length encoding of the zeros of x, where the run lengths are
expressed in unary. The total number of value bits, n, in this bit
plane is then incremented by m before being passed to the next bit
plane, which is encoded by first emitting its n lowest bits. The
assumption is that these bits correspond to n coefficients whose most
significant bits have already been output, i.e., these n bits are
essentially random and not compressible. Following this, the remaining
4d − n bits of the bit plane are run-length encoded as
described above, which potentially results in n being increased.

As an example, x = 000001001101000 with m = 10 is encoded as
010011110110001, where the bits in
boldface indicate “group tests” that determine if the remainder of x
(to the left) contains any one-bits. Again, this variable-length code
is generated and parsed from right to left.

	The embedded coder emits one bit at a time, with each successive bit
potentially improving the accuracy of the approximation. The early
bits are most important and have the greatest impact on accuracy,
with the last few bits providing very small changes. The resulting
compressed bit stream can be truncated at any point and still allow for
a valid approximate reconstruction of the original block of values.
The final step truncates the bit stream in one of three ways: to a fixed
number of bits (the fixed-rate mode); after some fixed number of bit
planes have been encoded (the fixed-precision mode); or until a lowest
bit plane number has been encoded, as expressed in relation to the common
floating-point exponent within the block (the fixed-accuracy mode).

Various parameters are exposed for controlling the quality and compressed
size of a block, and can be specified by the user at a very fine
granularity. These parameters are discussed here.

Lossless Compression

The reversible (lossless) compression algorithm shares most steps with
the lossy algorithm. The main differences are steps 2, 3, and 8, which are
the only sources of error. Since step 2 may introduce loss in the conversion
to zfp’s block-floating-point representation, the reversible algorithm adds
a test to see if this conversion is lossless. It does so by converting the
values back to the source format and testing the result for bitwise equality
with the uncompressed data. If this test passes, then a modified
decorrelating transform is performed in step 3 that uses reversible integer
subtraction operations only. Finally, step 8 is modified so that no one-bits
are truncated in the variable-length bit stream. However, all least
significant bit planes with all-zero bits are truncated, and the number of
encoded bit planes is recorded in step 7. As with lossy compression, a
floating-point block consisting of all (“positive”) zeros is represented as
a single bit, making it possible to efficiently encode sparse data.

If the block-floating-point transform is not lossless, then the reversible
compression algorithm falls back on a simpler scheme that reinterprets
floating-point values as integers via type punning. This lossless
conversion from floating-point to integer data replaces step 2, and the
algorithm proceeds from there with the modified step 3. Moreover, this
conversion ensures that special values like infinities, NaNs, and negative
zero are preserved.

The lossless algorithm handles integer data also, for which step 2 is omitted.

 Compression Modes

Compression Modes

zfp accepts one or more parameters for specifying how the data is to be
compressed to meet various constraints on accuracy or size. At a high
level, there are five different compression modes that are mutually
exclusive:
expert,
fixed-rate,
fixed-precision,
fixed-accuracy, and
reversible mode.
The user has to select one of these modes and its corresponding parameters.
In streaming I/O applications, the
fixed-accuracy mode is preferred, as
it provides the highest quality (in the absolute error sense) per bit of
compressed storage.

The zfp_stream struct encapsulates the compression parameters and
other information about the compressed stream. Its members should not be
manipulated directly. Instead, use the access functions (see the
C API section) for setting and querying them. One can
verify the active compression mode on a zfp_stream through
zfp_stream_compression_mode(). The members that govern the
compression parameters are described below.

Expert Mode

The most general mode is the ‘expert mode,’ which takes four integer
parameters. Although most users will not directly select this mode,
we discuss it first since the other modes can be expressed in terms of
setting expert mode parameters.

The four parameters denote constraints that are applied to each block
in the compression algorithm.
Compression is terminated as soon as one of these constraints is not met,
which has the effect of truncating the compressed bit stream that encodes
the block. The four constraints are as follows:

	
uint zfp_stream.minbits

	The minimum number of compressed bits used to represent a block. Usually
this parameter equals one bit, unless each and every block is to be stored
using a fixed number of bits to facilitate random access, in which case it
should be set to the same value as zfp_stream.maxbits.

	
uint zfp_stream.maxbits

	The maximum number of bits used to represent a block. This parameter
sets a hard upper bound on compressed block size and governs the rate
in fixed-rate mode. It may also be used as an
upper storage limit to guard against buffer overruns in combination with
the accuracy constraints given by zfp_stream.maxprec and
zfp_stream.minexp.

	
uint zfp_stream.maxprec

	The maximum number of bit planes encoded. This parameter governs the number
of most significant uncompressed bits encoded per transform coefficient.
It does not directly correspond to the number of uncompressed mantissa bits
for the floating-point or integer values being compressed, but is closely
related. This is the parameter that specifies the
precision in fixed-precision mode, and it
provides a mechanism for controlling the relative error. Note that this
parameter selects how many bits planes to encode regardless of the magnitude
of the common floating-point exponent within the block.

	
int zfp_stream.minexp

	The smallest absolute bit plane number encoded (applies to floating-point
data only; this parameter is ignored for integer data). The place value of
each transform coefficient bit depends on the common floating-point exponent,
e, that scales the integer coefficients. If the most significant
coefficient bit has place value 2e, then the number of bit planes
encoded is (one plus) the difference between e and
zfp_stream.minexp. As an analogy, consider representing
currency in decimal. Setting zfp_stream.minexp to -2 would,
if generalized to base 10, ensure that amounts are represented to cent
accuracy, i.e., in units of 10-2 = $0.01. This parameter governs
the absolute error in fixed-accuracy mode.
Note that to achieve a certain accuracy in the decompressed values, the
zfp_stream.minexp value has to be conservatively lowered since
zfp’s inverse transform may magnify the error (see also
FAQs #20-22).

Care must be taken to allow all constraints to be met, as encoding
terminates as soon as a single constraint is violated (except
zfp_stream.minbits, which is satisfied at the end of encoding by
padding zeros).

Warning

For floating-point data, the zfp_stream.maxbits parameter must
be large enough to allow the common block exponent and any control bits to
be encoded. This implies maxbits ≥ 9 for single-precision data and
maxbits ≥ 12 for double-precision data. Choosing a smaller value is
of no use as it would prevent any fraction (value) bits from being encoded,
resulting in an all-zero decompressed block. More importantly, such a
constraint will not be respected by zfp for performance reasons, which
if not accounted for could potentially lead to buffer overruns.

 Parallel Execution

Parallel Execution

As of zfp 0.5.3, parallel compression (but not decompression) is
supported on multicore processors via OpenMP [http://www.openmp.org]
threads.
zfp 0.5.4 adds CUDA [https://developer.nvidia.com/about-cuda]
support for fixed-rate compression and decompression on the GPU.

Since zfp partitions arrays into small independent blocks, a
large amount of data parallelism is inherent in the compression scheme that
can be exploited. In principle, concurrency is limited only by the number
of blocks that make up an array, though in practice each thread is
responsible for compressing a chunk of several contiguous blocks.

Note

zfp parallel compression is confined to shared memory on a single
compute node or GPU. No effort is made to coordinate compression across
distributed memory on networked compute nodes, although zfp’s fine-grained
partitioning of arrays should facilitate distributed parallel compression.

 High-Level C API

High-Level C API

The libzfp C API provides functionality for sequentially compressing and
decompressing whole integer and floating-point arrays or single blocks. It
is broken down into a high-level API and a
low-level API. The high-level API handles compression of
entire arrays and supports a variety of back-ends (e.g., serial, OpenMP).
The low-level API exists for processing individual, possibly partial blocks
as well as reduced-precision integer data less than 32 bits wide.
Both C APIs are declared in zfp.h.

The following sections are available:

	Macros

	Types

	Constants

	Functions

	Compressed Stream

	Compression Parameters

	Execution Policy

	Compression Configuration

	Array Metadata

	Compression and Decompression

Macros

	
ZFP_VERSION_MAJOR

	

	
ZFP_VERSION_MINOR

	

	
ZFP_VERSION_PATCH

	

	
ZFP_VERSION_TWEAK

	Macros identifying the zfp library version
(major.minor.patch.tweak). ZFP_VERSION_TWEAK
is new as of zfp 1.0.0 and is used to mark intermediate develop
versions (unofficial releases).

	
ZFP_VERSION_DEVELOP

	Macro signifying that the current version is an intermediate version that
differs from the last official release. This macro is undefined for
official releases; when defined, its value equals 1. Note that this
macro may be defined even if the four version identifiers
have not changed. Available as of zfp 1.0.0.

	
ZFP_VERSION

	A single integer constructed from the four
version identifiers. This integer can be generated by
ZFP_MAKE_VERSION or ZFP_MAKE_FULLVERSION. Its value
equals the global constant zfp_library_version.

Note

Although ZFP_VERSION increases monotonically with release date
and with the four version identifiers it depends on,
the mapping to ZFP_VERSION changed with the introduction of
ZFP_VERSION_TWEAK in zfp 1.0.0.

Going forward, we recommend using ZFP_MAKE_VERSION or
ZFP_MAKE_FULLVERSION in conditional code that depends on
ZFP_VERSION, e.g.,
#if ZFP_VERSION >= ZFP_MAKE_VERSION(1, 0, 0).
Note that such constructions should not be used with older versions of
zfp, e.g., if (zfp_library_version == ZFP_MAKE_VERSION(0, 5, 5))
will not give the expected result with binary versions of libzfp before
version 1.0.0.

 Low-Level C API

Low-Level C API

The libzfp low-level C API provides functionality for compressing individual
d-dimensional blocks of up to 4d values. If a block is not complete,
i.e., contains fewer than 4d values, then zfp’s partial
block support should be favored over padding the block with, say, zeros
or other fill values. The blocks (de)compressed need not be contiguous
and can be gathered from or scattered to a larger array by setting
appropriate strides. As of zfp 1.0.0, templated C++ wrappers
are also available to simplify calling the low-level API from C++.
The C API is declared in zfp.h; the C++ wrappers are found in
zfp.hpp.

Note

Because the unit of parallel work in zfp is a block, and because the
low-level API operates on individual blocks, this API supports only the
the serial execution policy. Any other execution
policy set in zfp_stream is silently ignored. For parallel
execution, see the high-level API.

 Bit Stream API

Bit Stream API

zfp relies on low-level functions for bit stream I/O, e.g., for
reading/writing single bits or groups of bits. zfp’s bit streams
support random access (with some caveats) and, optionally, strided
access. The functions read from and write to main memory allocated
by the user. Buffer overruns are for performance reasons not guarded
against.

From an implementation standpoint, bit streams are read from and written
to memory in increments of words of bits. The constant power-of-two
word size is configured at compile time, and is limited
to 8, 16, 32, or 64 bits.

The bit stream API is publicly exposed and may be used to write additional
information such as metadata into the zfp compressed stream and to
manipulate whole or partial bit streams. Moreover, we envision releasing
the bit stream functions as a separate library in the future that may be
used, for example, in other compressors.

Stream readers and writers are synchronized by making corresponding calls.
For each write call, there is a corresponding read call. This ensures
that reader and writer agree on the position within the stream and the
number of bits buffered, if any. The API below reflects this duality.

A bit stream is either in read or write mode, or either, if rewound to
the beginning. When in read mode, only read calls should be made,
and similarly for write mode.

Strided Streams

Bit streams may be strided by sequentially reading/writing a few words at
a time and then skipping over some user-specified number of words. This
allows, for instance, zfp to interleave the first few bits of all
compressed blocks in order to support progressive access. To enable
strided access, which does carry a small performance penalty, the
macro BIT_STREAM_STRIDED must be defined during compilation.

Strides are specified in terms of a block size—a power-of-two number
of contiguous words—and a delta, which specifies how many words to
advance the stream by to get to the next contiguous block. These bit
stream blocks are entirely independent of the 4d blocks used for
compression in zfp. Setting delta to zero ensures a non-strided,
sequential layout.

Macros

Two compile-time macros are used to influence the behavior:
BIT_STREAM_WORD_TYPE and BIT_STREAM_STRIDED.
These are documented in the installation
section.

Types

	
bitstream_word

	Bits are buffered and read/written in units of words. By default, the
bit stream word type is 64 bits, but may be set to 8, 16, or 32 bits
by setting the macro BIT_STREAM_WORD_TYPE to uint8,
uint16, or uint32, respectively. Larger words
tend to give higher throughput, while 8-bit words are needed to ensure
endian independence (see FAQ #11).

Note

To avoid potential name clashes, this type was renamed in
zfp 1.0.0 from the shorter and more ambiguous type name
word.

 Python Bindings

Python Bindings

zfp 0.5.5 adds zfPy: Python bindings that allow compressing
and decompressing NumPy [https://www.numpy.org] integer and
floating-point arrays. The zfPy implementation is based on
Cython [https://cython.org] and requires both NumPy and Cython
to be installed. Currently, zfPy supports only serial execution.

The zfPy API is limited to two functions, for compression and
decompression, which are described below.

Compression

	
zfpy.compress_numpy(arr, tolerance = -1, rate = -1, precision = -1, write_header = True)

	Compress NumPy array, arr, and return a compressed byte stream. The
non-expert compression mode is selected by setting one of
tolerance, rate, or precision. If none of these arguments is
specified, then reversible mode is used. By
default, a header that encodes array shape and scalar type as well as
compression parameters is prepended, which can be omitted by setting
write_header to False. If this function fails for any reason, an
exception is thrown.

zfPy compression currently requires a NumPy array
(ndarray [https://www.numpy.org/devdocs/reference/arrays.ndarray.html])
populated with the data to be compressed. The array metadata (i.e.,
shape, strides, and scalar type) are used to automatically populate the
zfp_field structure passed to zfp_compress(). By default,
all that is required to be passed to the compression function is the
NumPy array; this will result in a stream that includes a header and is
losslessly compressed using the reversible mode.
For example:

import zfpy
import numpy as np

my_array = np.arange(1, 20)
compressed_data = zfpy.compress_numpy(my_array)
decompressed_array = zfpy.decompress_numpy(compressed_data)

confirm lossless compression/decompression
np.testing.assert_array_equal(my_array, decompressed_array)

Using the fixed-accuracy, fixed-rate, or fixed-precision modes simply requires
setting one of the tolerance, rate, or precision arguments, respectively.
For example:

compressed_data = zfpy.compress_numpy(my_array, tolerance=1e-3)
decompressed_array = zfpy.decompress_numpy(compressed_data)

Note the change from "equal" to "allclose" due to the lossy compression
np.testing.assert_allclose(my_array, decompressed_array, atol=1e-3)

Since NumPy arrays are C-ordered by default (i.e., the rightmost index
varies fastest) and zfp_compress() assumes Fortran ordering
(i.e., the leftmost index varies fastest), compress_numpy()
automatically reverses the order of dimensions and strides in order to
improve the expected memory access pattern during compression.
The decompress_numpy() function also reverses the order of
dimensions and strides, and therefore decompression will restore the
shape of the original array. Note, however, that the zfp stream does
not encode the memory layout of the original NumPy array, and therefore
layout information like strides, contiguity, and C vs. Fortran order
may not be preserved. Nevertheless, zfPy correctly compresses NumPy
arrays with any memory layout, including Fortran ordering and non-contiguous
storage.

Byte streams produced by compress_numpy() can be decompressed
by the zfp command-line tool. In general, they cannot
be deserialized as compressed arrays, however.

Note

decompress_numpy() requires a header to decompress properly, so do
not set write_header = False during compression if you intend to
decompress the stream with zfPy.

 Fortran Bindings

Fortran Bindings

zfp 0.5.5 adds zFORp: a Fortran API providing wrappers around
the high-level C API. Wrappers for
compressed-array classes will arrive in a future release.
The zFORp implementation is based on the standard iso_c_binding
module available since Fortran 2003. The use of ptrdiff_t in
the zfp 1.0.0 C API, however, requires the corresponding
c_ptrdiff_t available only since Fortran 2018.

Every high-level C API function can be called from a Fortran wrapper function.
C structs are wrapped as Fortran derived types, each containing a single C
pointer to the C struct in memory. The wrapper functions accept and return
these Fortran types, so users should never need to touch the C pointers.
In addition to the high-level C API, two essential functions from the
bit stream API for opening and closing bit streams are
available.

See example code tests/fortran/testFortran.f (on the GitHub
develop branch [https://github.com/LLNL/zfp/tree/develop])
for how the Fortran API is used to compress and decompress data.

Note

zfp 1.0.0 simplifies the zFORp module name from
zforp_module to zfp. This will likely require changing
associated use statements within existing code when updating
from prior versions of zFORp.

Furthermore, as outlined above, the zfp 1.0.0 API requires
a Fortran 2018 compiler.

 Compressed-Array C++ Classes

Compressed-Array C++ Classes

zfp’s compressed arrays are C++ classes, plus C wrappers around
these classes, that implement random-accessible single- and multi-dimensional
floating-point arrays. Since its first release, zfp provides fixed-rate
arrays, zfp::array, that support both read and write access to
individual array elements. As of 1.0.0, zfp also supports
read-only arrays, zfp::const_array, for data that is static or is
updated only infrequently. The read-only arrays support all of
zfp’s compression modes including variable-rate
and lossless compression.

For fixed-rate arrays, the storage size, specified in number of bits per
array element, is set by the user. Such arbitrary storage is achieved via
zfp’s lossy fixed-rate compression mode, by
partitioning each d-dimensional array into blocks of 4d values
and compressing each block to a fixed number of bits. The more smoothly
the array values vary along each dimension, the more accurately zfp can
represent them. In other words, these arrays are not suitable for
representing data where adjacent elements are not correlated. Rather,
the expectation is that the array represents a regularly sampled and
predominantly continuous function, such as a temperature field in a physics
simulation.

The rate, measured in number of bits per array element, can be specified
in fractions of a bit (but see FAQs #12 and
#18 for limitations). zfp supports 1D, 2D, 3D, and (as
of version 1.0.0) 4D arrays. For higher-dimensional arrays,
consider using an array of zfp arrays. Note that array dimensions need not
be multiples of four; zfp transparently handles partial blocks on array
boundaries.

Read-only arrays allow setting compression mode and parameters on
construction, and can optionally be initialized with uncompressed data.
These arrays do not allow updating individual array elements, though
the contents of the whole array may be updated by re-compressing and
overwriting the array. This may be useful in applications that decompress
the whole array, perform a computation that updates its contents (e.g.,
a stencil operation that advances the solution of a PDE), and then compress
to memory the updated array.

The C++ templated array classes are implemented entirely as header files
that call the zfp C library to perform compression and decompression.
These arrays cache decompressed blocks to reduce the number of compression
and decompression calls. Whenever an array value is read, the corresponding
block is first looked up in the cache, and if found the uncompressed value
is returned. Otherwise the block is first decompressed and stored in the
cache. Whenever an array element is written (whether actually modified or
not), a “dirty bit” is set with its cached block to indicate that the block
must be compressed back to persistent storage when evicted from the cache.

This section documents the public interface to the array classes, including
base classes and member accessor classes like proxy references/pointers,
iterators, and views.

The following sections are available:

	Read-Write Fixed-Rate Arrays

	Read-Only Variable-Rate Arrays

	Caching

	Serialization

	References

	Pointers

	Iterators

	Views

	Codec

	Index

Read-Write Fixed-Rate Arrays

There are eight array classes for 1D, 2D, 3D, and 4D read-write arrays,
each of which can represent single- or double-precision values.
Although these arrays store values in a form different from conventional
single- and double-precision floating point, the user interacts with the
arrays via floats and doubles.

The array classes can often serve as direct substitutes for C/C++
single- and multi-dimensional floating-point arrays and STL vectors, but
have the benefit of allowing fine control over storage size. All classes
below belong to the zfp namespace.

Note

Much of the compressed-array API was modified in zfp 1.0.0
to support 64-bit indexing of very large arrays. In particular, array
dimensions and indices now use the size_t type instead of
uint and strides use the ptrdiff_t type instead of
int.

 Compressed-Array C Bindings

Compressed-Array C Bindings

zfp 0.5.4 adds cfp: C language bindings for compressed arrays
via wrappers around the C++ classes. zfp 1.0.0
modifies its API (see below).

The C API has been designed to facilitate working with compressed arrays
without the benefits of C++ operator overloading and self-aware objects,
which greatly simplify the syntax. Whereas one possible design considered
is to map each C++ method to a C function with a prefix, such as
zfp_array3d_get(a, i, j, k) in place of a(i, j, k) for
accessing an element of a 3D array of doubles, such code would quickly
become unwieldy when part of longer expressions.

Instead, cfp uses the notion of nested C namespaces that are structs
of function pointers, such as cfp.array3d. Although this may
seem no more concise than a design based on prefixes, the user may alias
these namespaces (somewhat similar to C++ using namespace
declarations) using far shorter names via C macros or local variables.
For instance:

const cfp_array3d_api _ = cfp.array3d; // _ is a namespace alias
cfp_array3d a = _.ctor(nx, ny, nz, rate, 0, 0);
double value = _.get(a, i, j, k);
_.set(a, i, j, k, value + 1);

which is a substitute for the C++ code

zfp::array3d a(nx, ny, nz, rate, 0, 0);
double value = a(i, j, k);
a(i, j, k) = value + 1;

Because the underlying C++ array objects have no corresponding C
representation, and because C objects are not self aware (they have no
implicit this pointer), the C interface interacts with compressed
arrays through array object pointers, wrapped in structs, that cfp
converts to pointers to the corresponding C++ objects. As a consequence,
cfp compressed arrays must be allocated on the heap and must be explicitly
freed via designated destructor functions to avoid memory leaks (this is
not necessary for references, pointers, and iterators, which have their
own C representation). The C++ constructors are mapped to C by allocating
objects via C++ new. Moreover, the C API requires passing an array
self pointer (wrapped within a cfp array struct) in order to manipulate
the array.

As with the C++ classes, array elements can be
accessed via multidimensional array indexing, e.g., get(array, i, j),
and via flat, linear indexing, e.g., get_flat(array, i + nx * j).

Note

The cfp API changed in zfp 1.0.0 by wrapping array
self pointers in structs to align the interface more closely with the
C++ API and to avoid confusion when discussing arrays (now
cfp.array rather than cfp.array*) and pointers to
arrays (now cfp.array* rather than cfp.array**).
Furthermore, zfp 1.0.0 adds support for proxy references,
proxy pointers, and iterators that also wrap C++ classes. Manipulating
those indirectly via pointers (like the old cfp arrays) would require
additional user effort to destroy dynamically allocated lightweight objects
and would also reduce code readability, e.g., cfp_ptr1d* (whose
corresponding C++ type is zfp::array1d::pointer*) reads more
naturally as a raw pointer to a proxy pointer than an indirectly referenced
proxy pointer object that the user must remember to implicitly dereference.

 Tutorial

Tutorial

This tutorial provides examples that illustrate how to use the zfp
library and compressed arrays, and includes code snippets that show
the order of declarations and function calls needed to use the
compressor.

This tutorial is divided into three parts: the high-level libzfp
library; the low-level
compression codecs; and the
compressed array classes (in that order). Users
interested only in the compressed arrays, which do not directly expose
anything related to compression other than compression
rate control, may safely skip the next two
sections.

All code examples below are for 3D arrays of doubles, but it should be
clear how to modify the function calls for single precision and for 1D,
2D, or 4D arrays.

High-Level C Interface

Users concerned only with storing their floating-point data compressed may
use zfp as a black box that maps a possibly non-contiguous floating-point
array to a compressed bit stream. The intent of libzfp is to provide both
a high- and low-level interface to the compressor that can be called from
both C and C++ (and possibly other languages). libzfp supports strided
access, e.g., for compressing vector fields one scalar at a time, or for
compressing arrays of structs.

Consider compressing the 3D C/C++ array

// define an uncompressed array
double a[nz][ny][nx];

where nx, ny, and nz can be any positive dimensions.

Note

In multidimensional arrays, the order in which dimensions are specified
is important. In zfp, the memory layout convention is such that x
varies faster than y, which varies faster than z, and hence x should
map to the innermost (rightmost) array dimension in a C array and to the
leftmost dimension in a Fortran array. Getting the order of dimensions
right is crucial for good compression and accuracy. See the discussion of
dimensions and strides and FAQ #0 for
further information.

 File Compressor

File Compressor

This section describes a simple, file-based zfp compression tool that is
part of the zfp distribution named zfp. Other, third-party,
file-based compression options are discussed in the
Application Support section.

The zfp executable in the bin directory is primarily
intended for evaluating the rate-distortion (compression ratio and quality)
provided by the compressor, but since version 0.5.0 also allows reading and
writing compressed data sets. zfp takes as input a raw, binary
array of floats, doubles, or integers in native byte order and optionally
outputs a compressed or reconstructed array obtained after lossy compression
followed by decompression. Various statistics on compression ratio and
error are also displayed.

The uncompressed input and output files should be a flattened, contiguous
sequence of scalars without any header information, generated for instance
by

double* data = new double[nx * ny * nz];
// populate data
FILE* file = fopen("data.bin", "wb");
fwrite(data, sizeof(*data), nx * ny * nz, file);
fclose(file);

zfp requires a set of command-line options, the most important
being the -i option that specifies that the input is uncompressed.
When present, -i tells zfp to read an uncompressed input
file and compress it to memory. If desired, the compressed stream can be
written to an output file using -z. When -i is absent,
on the other hand, -z names the compressed input (not output) file,
which is then decompressed. In either case, -o can be used to
output the reconstructed array resulting from lossy compression and
decompression.

So, to compress a file, use -i file.in -z file.zfp. To later
decompress the file, use -z file.zfp -o file.out. A single dash
“-” can be used in place of a file name to denote standard input or output.

When reading uncompressed input, the scalar type must be specified using
-f (float) or -d (double), or using -t
for integer-valued data. In addition, the array dimensions must be specified
using -1 (for 1D arrays), -2 (for 2D arrays),
-3 (for 3D arrays), or -4 (for 4D arrays).
For multidimensional arrays, x varies faster than y, which in turn
varies faster than z, and so on. That is, a 4D input file corresponding
to a flattened C array a[nw][nz][ny][nx] is specified as
-4 nx ny nz nw.

Note

Note that -2 nx ny is not equivalent to -3 nx ny 1, even
though the same number of values are compressed. One invokes the 2D codec,
while the other uses the 3D codec, which in this example has to pad the
input to an nx × ny × 4 array since arrays are partitioned
into blocks of dimensions 4d. Such padding usually negatively impacts
compression.

 Code Examples

Code Examples

The examples direct